1049 数列的片段和

这是一个关于计算数列中所有连续子序列和的算法问题。给定一个正整数数列,程序需要找出所有可能的连续子序列并计算它们的和,最后将这些和相加。示例中给出了一个包含0.1, 0.2, 0.3, 0.4的数列,其片段和为5.00。算法通过乘以1000然后除以1000.0来解决double精度丢失的问题。
摘要由CSDN通过智能技术生成

给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。

给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。

输入格式:

输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以空格分隔。

输出格式:

在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。

输入样例:

4
0.1 0.2 0.3 0.4

结尾无空行

输出样例:

5.00

结尾无空行

题解:

#include "stdio.h"

int main(){
    double num;
    int n,i;
    long long sum=0;
    scanf("%d\n",&n);
    for(i=0;i<n;i++){
        scanf("%lf",&num);
        //double的精度问题,double无法准确表达所有的小数,重复计算导致精度丢失
        sum+=(long long)(num*1000)*(i+1)*(n-i);
    }
    printf("%.2lf\n",sum/1000.0);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值