1049. 数列的片段和

原题描述:

给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段。

给定正整数数列,求出全部片段包含的所有的数之和。如本例中10个片段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。

输入格式:

输入第一行给出一个不超过105的正整数N,表示数列中数的个数,第二行给出N个不超过1.0的正数,是数列中的数,其间以空格分隔。

输出格式:

在一行中输出该序列所有片段包含的数之和,精确到小数点后2位。

输入样例:
4
0.1 0.2 0.3 0.4 
输出样例:
5.00
先找到求和规律,再判断其数据类型。

每一个包含a[i]的片段需要在a[i]左侧(包含a[i])和a[i]右侧(也包含a[i])各选取一个端点。我们使用0开始的计数。左侧端点选取可能有i+1种,右侧端点选取可能有N-i种。

因此包含a[i]的片段和一共有(i+1)(N-i)种,做一个加权求和即可求出片段和:


源代码如下:

#include <stdio.h>
int main ( )
{
    int N ;
    scanf("%d",&N );
    int i ;
    double ai, sum ;
    for ( i = 0 ; i < N ; i ++ )
    {
        scanf("%lf",&ai);
        sum += ai * ( i + 1 ) * ( N - i ) ;
    }
    printf("%.2lf\n",sum );
    return 0;


}


原文链接:http://www.jianshu.com/p/937a367ae4ea





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值