深度学习-pytorch学习笔记
pytorch学习笔记
搭建网络学习
# -*- coding:utf-8 -*-
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
download=True) # 设置下载到的路径 下载测试集(False) 变换为tensor数据集 下载
dataloader = DataLoader(dataset, batch_size=64) # 以64大小为批量,装入dataloader
class Guanzui(nn.Module): # 定义一个类,即神经网络Guanzui
def __init__(self):
super(Guanzui, self).__init__() # 继承父类
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=(3, 3), stride=(1, 1), padding=0)
# 设置卷积层的参数
def forward(self, x):
x = self.conv1(x) # 调用conv1卷积操作
return x # 输出
guanzui = Guanzui() # 生成实际网络guanzui
print(guanzui)
下载数据集时我遇到的问题:
ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: certificate has expired (_ssl.c:1129)
这表示 SSLCertVerificationError (SSL: CERTIFICATE_VERIFY_FAILED):证书验证失败:证书已经过期(_ssl.c: 1129)
解决方法:加入两行代码
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
结果:
所显示的网络名为 Guanzui,含有1个二维卷积层,in_channel=3,out_channel=6,kernel_size=(3,3),stride=(1,1)
改进:输出每一层信息
代码:
# -*- coding:utf-8 -*-
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
download=True) # 设置下载到的路径 下载测试集(False) 变换为tensor数据集 下载
dataloader = DataLoader(dataset, batch_size=64) # 以64大小为批量,装入dataloader
class Guanzui(nn.Module): # 定义一个类,即神经网络Guanzui
def __init__(self):
super(Guanzui, self).__init__() # 继承父类
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=(3, 3), stride=(1, 1), padding=0)
# 设置卷积层的参数
def forward(self, x):
x = self.conv1(x) # 调用conv1卷积操作
return x # 输出
guanzui = Guanzui() # 生成实际网络guanzui
# print(guanzui)
for data in dataloader: # 读入dataloader中的每个数据
imgs, targets = data # 由img(图片)和target(标签)组成
output = guanzui(imgs) # 图片放入网络中,输出到output
print(imgs.shape) # 输入img的大小
print(output.shape) # 经卷积之后的大小
结果:
batchsize=64,in_channel=3(彩色图像RGB) , 32×32大小的图像。
下一层:batchsize=64,in_channel=6(过卷积核之后) , 30×30大小的图像。
···
改进:生成日志
代码:
writer = SummaryWriter("../logs") # 生成一个日志
step = 0
for data in dataloader: # 读入dataloader中的每个数据
imgs, targets = data # 由img(图片)和target(标签)组成
output = guanzui(imgs) # 图片放入网络中,输出到output
print(imgs.shape) # 输入img的大小
print(output.shape) # 经卷积之后的大小
# torch.Size([64, 3, 32, 32])
writer.add_images("input", imgs, step)
# torch.Size([64, 6, 30, 30])
writer.add_images("output", output, step)
step = step + 1
结果:
解决方法:
pip install tensorboard
再运行结果:
解决方法:
功能快捷键
撤销:Ctrl/Command + Z
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
如何改变文本的样式
强调文本 强调文本
插入链接与图片
链接: link.
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' | ‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" | “Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash | – is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。1
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
注脚的解释 ↩︎