【pytorch学习笔记】

pytorch学习笔记

搭建网络学习

# -*- coding:utf-8 -*-
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)  # 设置下载到的路径  下载测试集(False)  变换为tensor数据集 下载
dataloader = DataLoader(dataset, batch_size=64)  # 以64大小为批量,装入dataloader


class Guanzui(nn.Module):   # 定义一个类,即神经网络Guanzui
    def __init__(self):
        super(Guanzui, self).__init__()  # 继承父类
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=(3, 3), stride=(1, 1), padding=0)
        # 设置卷积层的参数

    def forward(self, x):
        x = self.conv1(x)  # 调用conv1卷积操作
        return x           # 输出


guanzui = Guanzui()  # 生成实际网络guanzui
print(guanzui)


下载数据集时我遇到的问题:

ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: certificate has expired (_ssl.c:1129)

这表示 SSLCertVerificationError (SSL: CERTIFICATE_VERIFY_FAILED):证书验证失败:证书已经过期(_ssl.c: 1129)
解决方法:加入两行代码

import ssl
ssl._create_default_https_context = ssl._create_unverified_context

结果:
在这里插入图片描述
所显示的网络名为 Guanzui,含有1个二维卷积层,in_channel=3,out_channel=6,kernel_size=(3,3),stride=(1,1)
在这里插入图片描述
在这里插入图片描述
改进:输出每一层信息
代码:

# -*- coding:utf-8 -*-
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)  # 设置下载到的路径  下载测试集(False)  变换为tensor数据集 下载
dataloader = DataLoader(dataset, batch_size=64)  # 以64大小为批量,装入dataloader


class Guanzui(nn.Module):   # 定义一个类,即神经网络Guanzui
    def __init__(self):
        super(Guanzui, self).__init__()  # 继承父类
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=(3, 3), stride=(1, 1), padding=0)
        # 设置卷积层的参数

    def forward(self, x):
        x = self.conv1(x)  # 调用conv1卷积操作
        return x           # 输出

guanzui = Guanzui()  # 生成实际网络guanzui
# print(guanzui)

for data in dataloader:  # 读入dataloader中的每个数据
    imgs, targets = data  # 由img(图片)和target(标签)组成
    output = guanzui(imgs)  # 图片放入网络中,输出到output
    print(imgs.shape)  # 输入img的大小
    print(output.shape)  # 经卷积之后的大小

结果:
在这里插入图片描述
batchsize=64,in_channel=3(彩色图像RGB) , 32×32大小的图像。
下一层:batchsize=64,in_channel=6(过卷积核之后) , 30×30大小的图像。
···

改进:生成日志
代码:

writer = SummaryWriter("../logs")  # 生成一个日志

step = 0
for data in dataloader:  # 读入dataloader中的每个数据
    imgs, targets = data  # 由img(图片)和target(标签)组成
    output = guanzui(imgs)  # 图片放入网络中,输出到output
    print(imgs.shape)  # 输入img的大小
    print(output.shape)  # 经卷积之后的大小
    # torch.Size([64, 3, 32, 32])
    writer.add_images("input", imgs, step)
    # torch.Size([64, 6, 30, 30])
    writer.add_images("output", output, step)
    step = step + 1

结果:
在这里插入图片描述
解决方法:

pip install tensorboard

在这里插入图片描述
再运行结果:
在这里插入图片描述
解决方法:
代码:

功能快捷键

撤销:Ctrl/Command + Z

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。

如何改变文本的样式

强调文本 强调文本

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。1

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. 注脚的解释 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值