2D-object-detection-Bleach-vs-Naruto
《死神VS火影》| 试用YOLOv5完整体验自建数据集,训练模型,参数调优,最后实现2D目标检测的全过程。
DEMO
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-s4ZtAocP-1630595061020)(https://i.loli.net/2021/09/02/Jlog7weRvmDTfhr.jpg)]](https://i-blog.csdnimg.cn/blog_migrate/6a88e829e9b8ac69dccb9317e367b8f9.png)
Background
NIIT暑期实习大作业
Install
Download Project
直接Clone项目即可,推荐使用Pycharm启动工程 → See Github Homepage
Download Game [optional]
获取《死神vs火影 3.3》FLASH游戏本体
链接:https://pan.baidu.com/s/1gjYlIzwjsYKDt8-cq1AqhA
提取码:5dyt
Download BVN-Network [optional]
获取欠优化的序列模型,可直接用于预测任务
链接:https://pan.baidu.com/s/12Re3w9V56z-J-0LGCPK_IQ
提取码:digz
Download Database [optional]
获取作者手动标注的数据集(未经数据增强);包含录制的游戏视频及分割成帧的游戏图片,视频分割成帧的.py
脚本,官方贴图(人物模型),images图片数据集及其对应的labels标注集(使用make-sense导出)
链接:https://pan.baidu.com/s/1o64LCXUk9LR85ipCR9-cSw
提取码:7qqa
Usage
Clone项目后,请标记database
、game
目录为“排除”,network
为“运行根”。
以./network
为运行根启动Terminal
,执行detect.py
进行预测:
# /2D-object-detection-Bleach-vs-Naruto/network>
python detect.py
执行结果存放在./network/runs/detect/exp[number]
中。
Project Tree
如下所示为本项目的工程目录。
2D-object-detection-Bleach-vs-Naruto
├── database
│ ├── captures
│ ├── images
│ ├── labels
│ └── role_map
├── game
│ └── 死神vs火影3.3
├── LICENSE
├── network
│ ├── data
│ ├── detect.py
│ ├── export.py
│ ├── hubconf.py
│ ├── LICENSE
│ ├── models
│ ├── requirements.txt
│ ├── runs
│ ├── train.py
│ ├── utils
│ └── val.py
└── README.md
-
./database
存放训练数据-
./database/captures
:游戏录屏文件的存放目录 -
./database/images
:游戏录屏文件切割成帧后的图片存放目录 -
./database/labels
:图片帧的标注集(与images一一对应) -
./database/role_map
:预存放的游戏人物贴图,包含角色一户(卍解)以及漩涡鸣人
-
-
./game
存放《死神vs火影3.3》FLASH游戏本体Windows 客户端直接运行
./game/死神vs火影3.3/launch.exe
进入游戏。 -
./network
目录仿制YOLOv5
编排-
./network/data
存放需要执行预测任务的素材(如:图片、视频)./network/data/images
:需要执行预测任务的图片存放目录./network/data/video
:需要执行预测任务的视频存放目录./network/data/BleachVsNaruto.yaml
:引导模型训练所用数据集路径的配置文件
-
./network/models
存放yolo基准模型参数 -
./network/utils
存放构建网络的必要工具 -
./network/runs
存放网络运行缓存-
./network/runs/detect
:由detect.py
预测任务产生的输出,与所选择的./network/data/
资源一一对应 -
./network/runs/train
:由train.py
训练任务产生的输出,存放导出的模型、网络收敛图以及各种评价指标图./network/runs/train/bvn-base/weights/
中存放了欠优化的序列模型,可直接用于预测任务。
-
-
./network/detect.py
预测任务的启动接口 -
./network/train.py
训练任务的启动接口
-