算法----欧拉算法

在计算固体力学中多用Lagrange 列式,计算流体力学用Euler列式,但在解决流体-固体耦合问题时需要一种将两种方法的优点结合起来的算法,即Arbitrary Lagrange-Euler算法,简称为ALE算法。ALE最早是为了解决流体动力学问题而引入的,并使用有限差分方法。Donea,Belytschko等人分别将ALE法引入有限元当中,用于求解流体于结构相互作用问题。Hughes等人建立了ALE描述的运动学理论,并使用有限元法解决了粘性不可压缩流体和自由表面流动问题。随着ALE技术的不断完善,一些专业计算软件开始加入ALE功能,LS—Dyna是目前具有较成熟的ALE算法的大型通用有限元程序,程序中最先采用简化ALE,后来发展到多物质ALE,其应用领域主要是流固耦合方面的计算。

欧拉算法

  微分方程的本质特征是方程中含有导数项,数值解法的第一步就是设法消除其导数值,这个过程称为离散化。实现离散化的基本途径是用向前差商来近似代替导数,这就是欧拉算法实现的依据。欧拉(Euler)算法是数值求解中最基本、最简单的方法,但其求解精度较低,一般不在工程中单独进行运算。所谓数值求解,就是求问题的解y(x)在一系列点上的值y(xi)的近似值yi。对于常微分方程:

  dy/dx=f(x,y),x∈[a,b]

  y(a)=y0

  可以将区间[a,b]分成n段,那么方程在第xi点有y'(xi)=f(xi,y(xi)),再用向前差商近似代替导数则为:(y(xi+1)-y(xi))/h=f(xi,y(xi)),在这里,h是步长,即相邻两个结点间的距离。因此可以根据xi点和yi点的数值计算出yi+1来:

  yi+1= yi+h*f(xi,yi),i=0,1,2,L

  这就是欧拉格式,若初值yi+1是已知的,则可依据上式逐步算出数值解y1,y2,L。

  为简化分析,人们常在yi为准确即yi=y(xi)的前提下估计误差y(xi+1)-yi+1,这种误差称为局部截断误差。

  如果一种数值方法的局部截断误差为O(h^p+1),则称它的精度是p阶的,或称之为p阶方法。欧拉格式的局部截断误差为O(h^2),由此可知欧拉格式仅为一阶方法。

  欧拉公式:

  y(xi+1)=yi+h*f(xi,yi)

  且xi=x0+i*h (i=0,1,2,…,n-1)

  局部截断误差是O(h^2)

  

改进的欧拉算法

  先用欧拉法求得一个初步的近似值,称为预报值,然后用它替代梯形法右端的yi+1再直接计算fi+1,得到校正值yi+1,这样建立的预报-校正系统称为改进的欧拉格式:

  预报值 y~i+1=yi+1 + h*f(xi,yi)

  校正值 yi+1=yi+(h/2)*[f(xi,yi)+f(xi+1,y~i+1)]

  它有下列平均化形式:

  yp=yi+h*f(xi,yi)

  且 yc=yi+h*f(xi+1,yp)

  且 yi+1=(xp+yc)/2

  它的局部截断误差为O(h^3),可见,改进欧拉格式较欧拉格式提高了精度,其截断误差比欧拉格式提高了一阶。

  注:欧拉法用差商 [y(xi+1)-y(xi)]/h近似代替y(xi)的导数,局部截断误差较大;改进欧拉法先用欧拉法求出预报值,再利用梯形公式求出校正值,局部截断误差比欧拉法低了一阶,较大程度地提高了计算精度。

 

 

改进欧拉算法

#include<iostream.h>
#define N 20

void ModEuler(float (*f1)(float,float),float x0,float y0,floatxn,int n)
{
int i;
float yp,yc,x=x0,y=y0,h=(xn-x0)/n;
cout<<"x[0]="<<x<<'t'<<"y[0]"<<y<<endl;
for(i=1;i<=n;i++)
{
  yp=y+h*f1(x,y);
   x=x0+i*h;
  yc=y+h*f1(x,yp);
  y=(yp+yc)/2.0;
  cout<<"x["<<i<<"]="<<x<<"   y["<<i<<"]="<<y<<endl;
}
}
void main()
{

float xn=5.0,x0=0.0,y0=2.0;
float f1(float ,float);
ModEuler(f1,x0,y0,xn,N);
}
float f1(float x,float y)
{
return -x*y*y;
}

  • 1
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方法有很多,下面介绍两种常见的方法: 1. 分解质因数法 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 筛法 我们可以使用筛法(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数在数论中有很重要的应用,例如RSA算法的安全性就基于欧拉函数的难解性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值