基于豆瓣影评数据的文本分析系统【数据爬取+数据清洗+数据库存储+LDA主题挖掘+词云可视化】

本文介绍了基于豆瓣影评数据的文本分析流程,包括数据爬取、清洗、数据库存储、LDA主题挖掘和词云可视化。通过模拟登录、数据解析、预处理、存储到MySQL,然后利用LDA进行主题分析,最后以词云形式展示结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         本分析中很多的工作都是基于评论数据来进行的,比如:滴滴出行的评价数据、租房的评价数据、电影的评论数据等等,从这些语料数据中能够挖掘出来客户群体对于某种事物或者事情的看法,较为常见的工作有:舆情分析、热点挖掘和情感分析。

       如果想要了解关于文本分类或者是情感分析相关的工作内容,可以阅读我的《数据建模实战》专栏文章,下面是链接信息:

                                                               《基于文本数据的情感分析系统》

        在之前的工作经历中,我对微博数据和电影评论数据进行文本分析工作较多,今天的文章主要就是想以影评数据为切入点介绍一些自己文本分析的流程和方法,本文的主要内容包括:豆瓣影评数据采集、文本数据清洗预处理、数据库存储、LDA主题挖掘分析、词云可视化展示等几个主要部分。

       下面是 本文简单的实现流程如下图所示:

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值