基于头条新闻数据的文本分类系统实战

本文介绍了一个基于头条新闻数据的文本分类系统的实践过程,包括数据采集、存储解析、文本向量化处理和分类模型构建。选用今日头条作为数据源,通过F12开发者模式获取接口,使用JSON格式化处理数据,采用word2vec进行向量化,最后通过决策树和SVM进行分类,结果显示GDBT模型表现最优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       新闻数据本质上来说也属于文本数据,新闻分类本质也就归成了文本分类系统,本文主要是自己业余时间里面的一个小实践,主要是完成从数据采集、存储解析、文本向量化处理、分类模型构建几个步骤,方法和套路都是比较常规的,整体看效果还是不错的。

      这里我们初步选定今日头条来作为我们的数据源站点,毕竟头条的新闻类型很多,数据更新很快,尤其是如今火热的自媒体行业的兴起,一大批创作者涌入头条里面,综合多种原因,这里我们就选定今日头条作为我们的目标网站了。

     我们先来简单看张我们采集数据的网站首页截图,如下所示:

       左边红框里面我圈出来的就是头条提供的多种不同类型的新闻数据,这里我们首先的工作就是选取几个不同的类别数据进行采集。

      我们以【搞笑】为例,来分析数据采集的流程,点击F12进入开发者模式。然后选中该类别后,结果如下所示:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值