基于yolov5轻量级的学生上课姿势检测识别分析系统

本文介绍了一种基于轻量级YoloV5s模型的学生上课姿势检测系统。该系统通过YOLOv5s进行实时的人体姿态识别,并提供了详细的数据集、模型配置及训练过程。实验结果显示,此模型能够有效识别学生的不同上课姿势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在我之前的博文中已经做过关于人体姿势识别人体姿态检测的博文,都是比较早期的技术模型了,随机技术的迭代更新,很多更加出色的模型陆续出现,这里基于一些比较好用的轻量级模型开发的姿态检测模型。

原始博文如下:

《人体行为姿势识别数据集WISDM实践》

 

《yolov4-tiny目标检测模型实战——学生姿势行为检测》

 感兴趣的话可以自行移步前去阅读。

本文的主要工作室基于轻量级的yolov5s模型来开发学生上课姿势检测模型。首先看下效果:

基于yolov5的轻量级学生上课姿势检测分析系统

图像数据如下:

 YOLO格式的标注文件如下所示:

 模型配置文件如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

训练完成结果目录截图如下所示:

 训练过程监控指标如下:

 混淆矩阵:

 F1值曲线和PR曲线如下:

 标签可视化如下所示:

 batch检测样例可视化如下所示:

 启动检测系统如下:

 点击上传图像即可选择想要检测识别的图像,如下所示:

 点击目标检测识别即可启动离线推理计算,如下所示:

 

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值