水泥路面、桥梁基建、隧道裂痕裂缝检测数据集

在我之前的博文中已经写过几篇关于特定场景下的裂痕裂缝检测的模型实践文章,后面也有很项目应用都是基于此构建的,这里主要是对前面几篇博文的数据集进行介绍。

相应的系列文章如下,感兴趣的话可以自行移步阅读即可。

《基于yolov5s+bifpn实践隧道裂缝裂痕检测》

 《基于YOLOV7的桥梁基建裂缝检测》

裂缝检测系统演示

《基于DeepLabV3实践路面、桥梁、基建裂缝裂痕分割》

 《助力交通出行,基于目标检测模型实现路面裂痕缺陷智能识别》

 《YOLO 3/4/5/6/7/x、Efficient、MaskRcnn、FasterRcnn、FCOS、SSD、M2Det、Retina、CenterNet、PicoDet等系列数据模型汇总持续更新中》

 简单的回顾介绍就到这里,接下来回归本文正题。

接下来主要是针对性地对数据集进行介绍

【基础数据集】

整体数据单样本尺寸为416*416,可以直接用于模型训练,该型数据集全部来源于真实采集、网络爬取等,全部由人工标注。精细粒度的小框覆盖标注方式完成的数据标注,如下:

 图像数据如下:

  这里同时提供了YOLO和VOC两种格式的数据集,如下所示:

 

 这里共有8168的样本量。

【旋转数据集】

由于在实际业务场景中,经常会发生摄像头旋转偏移等问题,导致采集到的图像复杂多变,这里基于特定角度实现了数据集的增强处理,如下:

 图像数据如下所示:

 这里也是同时提供了yolo格式和voc格式的标注文件,分别如下所示:

 这里共有12252的样本量。

【深度数据集】

这批数据集主要是考虑到将当前一些比较好的数据增强技术应用到实际项目中的数据增强中去,获取到更加高阶的数据,使得模型能够更加高效鲁棒地去学习,如下:

 图像数据如下:

 同样这里也是同时提供了YOLO和VOC两种格式的标注数据,如下:

  这里共有8888的样本量。

【尺度数据集】

考虑到不同渠道获取到的数据集其实从尺寸和分辨率等角度都是不相同的,这里为了尽可能使得训练所需的数据集更加丰富化,对各个源头渠道获取到的数据集进行了不同程度的形变尺度处理,如下所示:

 图像数据如下:

 同样,这里也是同时提供了YOLO和VOC两种格式的数据集,如下所示:

 开发不易,最初是由于实际业务项目有需要从零获取到的未标注的数据集,后面花了大量的时间人工去标注,因为裂缝本身最初的检测识别技术基本都是以分割模型为基础的,但是分割模型计算量大,且计算提取到的结果不是很好能够实际业务应用结合起来,后面经过研究后决定借助于检测的方法来实现裂缝检测识别,由于现实中裂痕裂缝千奇百怪,如果直接使用简单粗暴的框去标注的话不仅识别效果会很差,模型计算也会是一个大问题,所以这里我基于细粒度的覆盖框实现了精细的标注,经过一个多月的开发迭代目前上线后效果还是很不错的。

因为后面有很多在咨询这个,所以我今天专门抽时间写了这篇文章,数据资源并不是无偿的,这都是辛苦开发的,非必要的话可以直接网上搜索开源数据集诸如VOC COCO做模型即可,确实需要的话可以再联系我。

下面是一些样本标注实例:

 还有一些检测结果实例:

 

### 路面病害分割数据集概述 对于路面病害分割的任务,目前存在多个公开可用的数据集。以下是几个常见的数据集及其特点: #### 1. Crack500 数据集 Crack500 是一个广泛使用的裂缝检测数据集,包含大量高质量的图像样本。具体来说,该数据集分为训练集、验证集和测试集三部分,分别包含 1896 张、348 张和 1124 张图像[^1]。这些图像主要用于评估模型在裂缝识别方面的性能。 #### 2. 自研巡查车路面病害数据集 这是一个由特定项目采集的数据集,主要来源于车载自动化巡查设备记录的路面视频,并通过固定时间间隔进行帧采样生成图像。此数据集共包含 1000 张分辨率为 1080×720 的 PNG 图像,按照 3:1 的比例划分为训练集和验证集。其语义类别包括横向裂缝、纵向裂缝和坑槽三种。 #### 3. 水泥路面桥梁基建隧道裂痕裂缝检测数据集 此类数据集涵盖了多种基础设施场景下的裂缝情况,旨在提高模型对复杂环境中的病害特征的学习能力。由于原始数据可能来自不同渠道且具有不同的尺寸与分辨率特性,在实际使用前通常会对数据进行预处理以增强多样性[^3]。 #### 4. 航拍路面病害检测道路裂缝检测数据集 (VOC+YOLO 格式) 这个数据集提供了更高维度的信息——即不仅限于地面视角拍摄的照片,还包括空中俯瞰角度捕捉到的画面内容。总共收录了约 3302 张图片,覆盖七个类别标签[^4]。值得注意的是,虽然它的命名提到了 YOLO 和 VOC 这些目标检测框架支持的标准格式文件结构,但对于某些特殊需求比如精确测量裂缝长度宽度等情况,则更适合采用像素级别标注方式完成任务[^5]。 ### 数据集下载链接 - **Crack500**: 可直接访问官方发布页面或者相关学术资源网站查询获取途径。 - **自研巡查车路面病害数据集**: 如果无法在线找到公共资源版本,可以通过联系研究团队成员请求协助提供副本。 - **水泥路面桥梁基建隧道裂痕裂缝检测数据集**: 类似这种综合性较强的大规模数据库往往需要注册账号并通过审核流程才能正式获得授权使用权。 - **航拍路面病害检测道路裂缝检测数据集(VOC+YOLO)** : 提供了一个具体的网络存储位置作为参考:`https://download.csdn.net/download/FL1623863129/89659849` ```python import requests from pathlib import Path def download_dataset(url, save_path): response = requests.get(url) if response.status_code == 200: with open(save_path, 'wb') as f: f.write(response.content) url = "https://example.com/dataset.zip" save_path = Path("./dataset.zip") download_dataset(url, save_path) ``` 上述脚本展示了一种简单的方法来实现自动化的数据抓取过程(注意替换真实有效的URL地址)。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值