自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI学长

人工智能

  • 博客(106)
  • 资源 (6)
  • 收藏
  • 关注

原创 图解 | 大模型智能体LLM Agents

本文介绍了LLM代理的存储机制和工具使用方法。在存储方面,LLM具有短期记忆和长期记忆:短期记忆通过上下文窗口或总结对话历史实现;长期记忆则借助向量数据库和检索增强生成(RAG)技术存储历史交互。在工具使用方面,LLM可通过函数调用与外部环境交互,Toolformer等技术能训练模型自主调用API。此外,模型上下文协议(MCP)标准化了API访问流程,简化了工具集成。这些技术共同增强了LLM的记忆能力和功能性。

2025-05-25 23:49:07 916

原创 论文解读|Anthropic提出Contextual Retrieval让RAG再进化,大幅降低检索失败率

2024年9月,Anthropic发布了一种名为Contextual Retrieval的新方案,旨在提升RAG(Retrieval-Augmented Generation)系统的检索准确性。该方案通过结合上下文嵌入(Contextual Embeddings)和上下文BM25(Contextual BM25),将检索失败率降低了49%。传统RAG系统在处理大型知识库时,通常将文档分割成小块进行检索,但这种方式容易丢失上下文信息,导致检索结果不准确。Contextual Retrieval通过在嵌入和BM

2025-05-13 00:40:36 575

原创 数据集 | 苹果目标检测数据集

在农业智能化转型和精准农业发展的背景下,基于计算机视觉的果实自动检测技术扔值得研究。规模适中:包含4430张精心采集的苹果图像,平衡了数据规模与标注质量;场景多样:覆盖不同光照条件(晴天、阴天、逆光)、不同生长期和不同品种的苹果;精细标注:采用统一的标注标准,由农业专家参与审核,确保标注准确性;应用广泛:适用于果实自动计数、成熟度监测、产量预估等多种农业应用场景;该数据集可为以下研究提供支持:● 开发果园自动化监测系统;● 评估不同目标检测算法在农业场景的性能;

2025-04-23 23:04:40 573

原创 数据集 | 柑橘果目标检测数据集

领域痛点与解决方案果实定位准确性不足:传统图像识别方法难以区分树上果实与掉落果实,影响产量估算准确性;数据多样性缺乏:现有数据集往往只包含单一状态(仅树上或仅地上)的柑橘样本;环境适应性差:大多数模型在复杂果园环境(多变光照、遮挡等)下表现不佳。本数据集针对性地解决了这些问题:● 双状态标注:同时标注树上柑橘和树下柑橘,为果实状态识别提供基础。● 真实场景覆盖:包含580张不同光照条件、拍摄角度和成熟度的柑橘图像。

2025-04-22 22:36:50 618

原创 数据集 | 沥青路面缺陷目标检测

当前道路养护领域面临几个显著挑战:1. 数据稀缺性:大多数机构缺乏高质量的标注数据集来训练可靠的缺陷检测模型。2. 类别不平衡:现有数据集往往只关注裂缝等常见缺陷,忽视修补区域和井盖等重要类别。本沥青路面缺陷目标检测数据集提供6,000张精心标注的高质量图像,包含6个关键类别:裂缝、裂缝修补、坑洞、坑洞修补、井盖及其他。

2025-04-12 20:28:35 1009

原创 柑橘病虫害图像分类数据集OrangeFruitDataset-8600

柑橘,作为水果界的 “宠儿”,不仅以其酸甜可口的味道深受大众喜爱,更是在全球水果产业中占据着举足轻重的地位。无论是早餐中的一杯橙汁,还是下午茶里的柑橘甜点,柑橘的身影无处不在,它为无数人带来了味觉上的享受。据统计,全球柑橘的种植面积广泛,产量可观,是许多国家农业经济的重要支柱。我国作为柑橘的主要产地之一,柑橘种植历史悠久,品种丰富,从南到北,众多地区都有柑橘的种植,为当地农民带来了可观的收入。然而,在柑橘产业蓬勃发展的背后,一场无声的 “健康危机” 正悄然降临,那就是柑橘病虫害。

2025-04-09 23:21:21 949

原创 道路裂缝分割检测CrackSegmentationDataset-11200

该数据集包含从12个可用的裂纹分割数据集合并而成的约11200张图像。将每个图像的名称前缀分别是图像原来的数据集。所有图像都被调整为(448,448)的大小。train和test 分别是训练和测试图像,测试图像一共 1695 张,训练图像一共 9603 张;train和test 结构是一样的,都包含了 images 和 masks 文件夹,其中images 包含了 jpg 图片和对于的 JSON 标签文件,masks 包含分割的掩码图像。

2025-04-06 02:00:11 466

原创 道路裂缝数据集CrackForest-156-labelme

在现代城市管理中,道路状况的监测与维护是确保交通安全和城市基础设施健康的重要环节。CrackForest是一个专门为道路裂缝检测和路面状况评估而设计的高质量图像数据库。该数据集包含了156张带注释的道路裂缝图像和标注信息文件,能够为研究人员和开发者提供丰富的数据资源,助力他们在这一领域的研究和应用开发。这些图像不仅捕捉了城市路面的真实状况,还通过专业的注释技术,标记了裂缝的位置和形态。这种数据集非常适合用于训练和验证基于深度学习的道路裂缝检测模型。

2025-04-05 23:04:02 724

原创 道路坑洼目标检测数据集-665-labelme

目标:从道路图像中检测坑洼;应用:检测道路地形和坑洼可实现平稳行驶,小型数据集常常用于学习和学术研究;详细信息: 665 张图、1740个在坑洼处标注的图像数据集,可直接用于坑洼目标检测模型训练。"im_count": 665, # 图片数量"pothole": 1740 # 坑洼标注数据是一逃目标检测数据集。数据采用X-AnyLabeling-CPU-v2.5.0.exe 进行标注。文件包含图像 JPG 文件和标注文件 JSON 格式。],

2025-04-05 14:40:16 433

原创 快递包裹目标检测数据集,labelme格式

这是一套专门针对快递包裹检测的训练数据集。此数据集基于广为人知的COCO数据集进行了扩展,特别添加了大量快递包裹相关的JPEG图像及对应的 labelme 格式标注文件。这些资源对于开发和训练快递行业中的物体识别、自动分拣系统等AI应用至关重要。图片数量 2919 张。标签包括包裹、人、车辆、大车、狗等。● 图像文件:包含各式各样的快递包裹场景,确保模型能够学习到丰富的包裹外观特征。

2025-04-05 02:24:33 534

原创 目标检测数据大全

本文收集常见的 AI 深度学习视觉目标检测数据集,包括网络开源、网络收集、自己制作等等。

2024-05-12 15:46:07 245

原创 CCPD车牌检测识别数据集

CCPD (Chinese City Parking Dataset, ECCV)是中国城市车牌数据集,共有两个CCPD2019和CCPD2020 数据集,总数据量约35W左右,可用于车牌检测和识别模型算法开发。CCPD 发表的论文: https://arxiv.org/abs/1709.08828CCPD2020 数据集包含约1万,主要是新能源绿牌数据。CCPD2019数据集主要是蓝牌数据,将近34W 张图片、图片尺寸为720x1160x3,共包含8种类型图片

2024-05-12 15:38:22 4024 1

原创 linux通过进程pid查询容器docker

如果有用,请点个三连呗。

2024-04-02 22:18:22 1076

原创 YOLO模型解析代码

yolo通常是通过配置文件来构建模型的。如果有用,请点个三连呗。

2024-04-02 00:22:59 595

原创 pip安装包出现错误:ModuleNotFoundError: No module named ‘cmake,ERROR: Failed building wheel for onnx

安装包和依赖是需要编译,错误中提示pyhon环境中cmake运行错误,可能是没有安装cmake。安装cmake之后,重新运行即可。如果有用,请点个三连呗。

2024-03-23 12:38:05 2006

原创 pip无法从清华源下载,ERROR: HTTP error 403 while getting https://pypi.tuna.tsinghua.edu.cn

我的错误是无法从清华源下载opencv包。如果有用,请点个三连呗。更换pip默认源为阿里源。

2024-03-23 12:26:42 6690 1

原创 (三)pulsar可视化消息管理工具

版本: 3.2.x。

2024-03-20 00:42:26 793

原创 (二)pulsar安装在独立的docker中,python测试

pulsar安装在独立docker中

2024-03-19 01:12:24 647

原创 (一)pulsar介绍

Apache Pulsar 是一个企业级的分布式消息系统,最初由 Yahoo 开发,在 2016 年开源,并于2018年9月毕业成为 Apache 基金会的顶级项目。Pulsar 已经在 Yahoo 的生产环境使用了三年多,主要服务于Mail、Finance、Sports、 Flickr、 the Gemini Ads platform、 Sherpa (Yahoo 的 KV 存储)。Pulsar是一种用于服务器到服务器消息传递的多租户,高性能解决方案。Pulsar最初由雅虎公司开发,由Apache So

2024-03-19 01:07:49 566

原创 计算两张图片的结构相似性指数SSIM

主要考虑了人眼的感知特性,比较两幅图像的亮度、对比度和结构等特征。SSIM 取值范围在 [-1, 1] 之间,越接近 1 表示两幅图像越相似。比较一个文件中哪些图像存在相似的代码示例。

2024-03-17 20:13:09 948

原创 用于吸烟动作目标检测的数据集

用于吸烟动作目标检测的数据集。数据集使用labelme标注。数据集类别分为:吸烟嘴(嘴上吸烟支smoking)、吸烟手(手上拿着烟smoking_hand)。吸烟动作检测part01有1115张图像。

2024-03-17 17:57:56 911

原创 Milvus向量数据库检索

本节介绍如何使用 Milvus 搜索实体。Milvus 中的向量相似度搜索会计算查询向量与具有指定相似度度量的集合中的向量之间的距离,并返回最相似的结果。您可以通过指定过滤标量字段或主键字段的布尔表达式来执行混合搜索。下面的例子展示了如何对2000行的图书ID(主键)、字数(标量场)、图书介绍(向量场)的数据集进行向量相似度搜索,模拟根据搜索条件搜索某本书的情况关于他们的矢量化介绍。Milvus 会根据您定义的查询向量和搜索参数返回最相似的结果。

2024-03-14 22:58:17 2825

原创 Milvus数据实体的插入、修改、删除

Milvus数据实体的插入、修改、删除

2024-03-14 22:44:21 4792 2

原创 Douglas-Peucker压缩算法

是一种用于简化多边形曲线的算法,它通过减少曲线上的点数来逼近原始曲线,同时尽可能地保持其形状。opencv的approxPolyDP就是使用这个算法。

2024-03-13 14:21:49 576

原创 opencv的approxPolyDP函数

cv2.approxPolyDP() 是 OpenCV 库中的一个函数,用于逼近多边形曲线。它可以将一条曲线用更少的点来表示,同时尽可能地保持其形状。原来是使用Douglas-Peucker算法,表示曲线上的点与逼近后的多边形之间的最大距离d,若d小于epsilon,则滤掉,否则保留。函数返回一个逼近后的多边形,表示为 2D 点的列表或 NumPy 数组。

2024-03-13 14:19:23 3692

原创 Milvus的向量索引(内存索引)

Milvus 支持的各种类型的内存索引、每种索引最适合的场景以及用户可以配置以获得更好搜索性能的参数。索引是有效组织数据的过程,它通过显着加速大型数据集上耗时的查询,在使相似性搜索变得有用方面发挥着重要作用。为了提高查询性能,您可以为每个向量字段指定索引类型。注意:目前,向量字段仅支持一种索引类型。 Milvus 在切换索引类型时会自动删除旧索引。

2024-03-11 22:14:38 2891

原创 Milvus的相似度指标

版本: v2.3.x在 Milvus 中,相似度度量用于衡量向量之间的相似度。选择良好的距离度量有助于显着提高分类和聚类性能。下表展示了这些广泛使用的相似性指标如何与各种输入数据形式和 Milvus 索引相匹配。

2024-03-11 21:51:06 2994

原创 机器学习评价指标(分类、目标检测)

通常来讲,逻辑回归的概率越大说明越接近1,也就可以说他是坏用户的可能性更大。比如,我们定义了阈值为0.5,即概率小于0.5的我们都认为是好用户,而大于0.5都认为是坏用户。因此,对于阈值为0.5的情况下,我们可以得到相应的一对查准率和查全率。

2024-03-10 22:57:57 1380 2

原创 makedowm文本居中、首行缩进、回车换行

在使用Markdown的时候(例如CSDN的文字变形),发现一段文字前面无论空多少空格都会被忽略,这就导致无法做到首行缩进。由于Markdown本身不支持字体居中,所以采取HTML语法。之间的文本使用 `` 或者 加粗 等无效。输入两个空格,然后接着按下Enter。使用 \,然后接着按下Enter。如果有用,请点个三连呗。

2024-03-10 15:33:59 2903

原创 Linux Docker安装redis缓存数据库

Linux Docker安装redis数据库

2024-03-09 14:06:45 647

原创 python redis连接池实现代码

最近在使用redis时,我的场景是数据读取频繁,短连接方式导致链接的开销,性能变慢。高并发下还频繁出现链接不上的问题等问题。连接池是个解决该问题不错的方法

2024-03-09 13:45:15 1204

原创 指数移动平均(EMA)

在深度学习中,经常会使用EMA(指数移动平均)这个方法对模型的参数做平均,以求提高测试指标并增加模型鲁棒。实际上,EMA可以看作是Temporal Ensembling,在模型学习过程中融合更多的历史状态,从而达到更好的优化效果。指数移动平均(Exponential Moving Average)也叫权重移动平均(Weighted Moving Average),是一种给予近期数据更高权重的平均方法。

2024-03-08 00:39:42 3054 1

原创 Attention的基本原理

Attention的思想如同它的名字一样,就是“注意力”,在预测结果时把注意力放在不同的特征上。

2024-03-08 00:05:25 466

原创 yolov9网络结构图

yolov9结构图

2024-03-07 23:53:56 4153 3

原创 MongoDB和Mysql区别与各自优缺点

最近使用数据库来做大模型Chat记录和后续的数据处理,对比musql和mongodb,整理如下:

2024-03-05 14:37:15 962

原创 YOLOV9论文解读

yolov9提出可编程梯度信息(PGI)和基于梯度路径规划的通用高效层聚合网络(GELAN),最终铸成YOLOv9目标检测全新工作!性能表现SOTA!在各个方面都大大超过了现有的实时目标检测器,优于RT DETR、YOLOv8等网络,代码刚刚开源

2024-03-05 09:23:28 3308

原创 服务版本ubuntu22.04安装显卡驱动

服务版本ubuntu22.04安装显卡驱动

2024-02-28 09:19:54 2325

原创 MobaXterm解决session保存不能超过14个限制

MobaXterm解决session保存不能超过14个限制

2024-02-28 09:19:07 3711 9

原创 docker配置数据默认存储路径graph已过时,新版本中是data-root

docker配置数据默认存储路径graph已过时,新版本中是data-root

2024-02-28 09:17:07 1364

原创 Ubuntu 22.04 LTS中安装Docker,并支持显卡

Ubuntu 22.04 LTS中安装Docker,并支持显卡

2024-02-27 09:42:13 878

猫狗分类小数据集-用于图像分类实验(如: VGG\AlexNet\resnet等)

包含两个类别: 训练集 猫10000张,狗10000张 测试集 猫2500张, 狗2500张

2023-06-16

数据集牛品种CattleBreed,包含90个类别,每个类别50张图片

包含类别如下: Abondance-奶牛,Afrikaner阿非利卡牛,Albera阿尔伯拉,AmericanMilkingDevon美国产奶德文郡,Angus,AnkoleWatusi,Aquitaine,Argentine,Armorican,Arouquesa,Asturian,AustralianBraford,Bargur,Barzona,Bazadaise,Belgian,Belmont,BlackHereford,BlondeAquitaine,Boran,Braford,Brahman,Brangus,Braunvieh,Brava,brownSwiss,Burlina,Busa,Cachena,Camargue,CanadianSpeckle,Canadienne,Canchim,Caracu,Casta,Charolais,Chianina,Corriente,Corsican,Criollo,Dangi,DanishRed,Deoni,Devon,Dexter,Dhannir,Droughtmaster,DutchBelted,EnglishLonghorn...

2023-07-07

YOLOv5face论文(基于yolov5的人脸关键点检测)

YOLOv5face论文(基于yolov5的人脸关键点检测)

2023-06-27

PP-YOLOv2论文

PP-YOLOv2论文

2023-06-19

EfficientDet目标检测论文

EfficientDet目标检测论文

2023-06-19

牛脸检测小数据集,里边包含700张牛脸图片和对应的标注文件 适合小实验使用

牛脸检测小数据集 -- 目标检测数据集。 里边包含700张牛脸图片和对应的标注文件。 图片是.jpg文件和标签文件是labelme软件标注的json文件。 此数据集适合小实验实验

2023-06-23

第4例 代码基于卷积神经网络VGG的猫狗图像识别

包含如下文件: Mode LastWriteTime Length Name d----- 2023/6/16 21:58 data_process d----- 2023/6/16 22:02 network -a---- 2023/6/16 22:51 220 check_gpus.py -a---- 2022/4/3 18:58 812 predict_model.py -a---- 2023/6/16 22:51 507 README.md -a---- 2023/6/16 23:17 4945 train_model.py 对应文章: https://blog.csdn.net/qq_21386397/article/details/1239

2023-06-16

整理了一份《Stable Diffusion Prompt 提示词语法》,包含基础语法、权重语法、分布与交替渲染以及示例

文档是markdowm编写的(PDF导出文件): stablediffusion提示词使语法.md stablediffusion提示词使语法.pdf 内容: 一、基础语法 二、权重语法 三、分布与交替渲染

2023-04-26

GPT4技术报告中文翻译版本,内附英文原版

文件列表: 【英文原版】2303.08774.pdf GPT4技术报告中文翻译版本.pdf

2023-04-26

004卷积神经网络LeNet-实现手写体识别例子

数据集:MNIST; 网络:卷积神经网络LeNet 框架:tensorflow2.x

2023-03-13

003全连接的手写体数字识别 - 基于tensorflow2.x实现

数据集:MINST,框架:tensorflow2.x;网络:全连接

2023-03-13

002多层感知器例子 - Numpy(没有用框架)实现异或门模型代码

002多层感知器例子 - Numpy(没有用框架)实现异或门

2023-03-12

001感知器实验例子 - numpy (不用框架)编写的感知器模型的与门例子代码

python numpy (不用框架)编写的感知器模型--与门例子代码。

2023-03-12

花图像分类(雏菊、玫瑰、向日葵)小型数据集

训练集: 雏菊daisy 449 玫瑰roses 534 向日葵sunflowers 579 验证集: 雏菊daisy 128 玫瑰roses 107 向日葵sunflowers 120

2023-03-12

嵌入式系统开发 - ARM Cortex-M3 嵌入式系统 (黄克亚版本)教材课件

嵌入式系统开发材料---教材课件 第01章 ARM Cortex-M3嵌入式系统; 第02章 STM32开发板硬件系统; 第03章 MDK软件与工程模板创建; 第04章 通用目的输入输出口; 第05章 LED流水灯与SysTick定时器; 第06章 按键输入与蜂鸣器; 第07章 数码管动态显示; 第08章 中断系统与基本应用; 第09章 定时器与脉冲宽度调制; 第10章 串行通信接口USART; 第11章 SPI接口与OLED显示屏; 第12章 模拟数字转换器; 第13章 直接存储器访问; 第14章 I2C接口与EEPROM存储器; 第15章 RTC时钟与BKP寄存器

2023-03-12

隶书行楷数据集-中文字体识别

包含训练集和测试集 训练集:行书4000张图片、隶书40000张图片 测试集:行书2000张图片、隶书20000张图片

2022-12-06

目标检测之口罩检测数据集,2700张图片和相应的VOC格式标注信息

目标检测之口罩检测数据集,2700张图片和相应的VOC格式标注信息 格式是VOC数据格式: JPEGImages -- 图片保存的目标,一个包含2700张图片; Annotations -- 目标检测标注信息,一个xml文件对应JPEGImages里边的一张图片;

2022-03-20

OpenCV计算机视觉基础教程(Python版慕课版)课件PPT,一共包含10章

OpenCV计算机视觉基础教程(Python版)(慕课版)一共包含10章;目录如下; 第1章 环境搭建 第2章 图像处理基础 第3章 图像用户界面 第4章 图像处理基础算法 第5章 边缘和轮廓 第6章 直方图 第7章 模板匹配与图像分割 第8章 特征检测 第9章 人脸检测与识别 第10章 机器学习与深度学习

2022-03-22

基于LSTM的电影评论感情倾向分析代码,适合初学者研究RNN模型,适合毕业设计参考

项目:中文电影评论情感分类 如: 输入 评论语句 --> model --> positive/negative 一、数据集 数据集在data目录下,已经打好标签(1--positive, 0--negative),也已经做好分词 数据集的处理: data_manager.py: 二、模型构建 基于lstm实现:network/mylstm.py 第一部分:词转成词向量 第二部分:2个RNN层 第三部分:用全连接层做分类, 转成概率格式 三、跑训练 train.py、model.py 1. 定义模型 2. 读取数据集 3. 训练:外循环是迭代、内循环批次 前向计算、计算误差、计算梯度、更新权重 4. 保存模型 四、预测 使用训练好的模型,predict_demo.py 1. 加载模型、词汇表 3. 把预测的句子转成词汇表下标表示 4. 送入模型进行前向计算 5. 判断是正向还是负向

2022-03-14

英文翻中文的小数据集,适合做自然语言处理NPL的机器翻译模型验证

数据集中是英文翻译中文的小数据集;包含20000条短语翻译。 train.txt -- 训练集合 train_idx.txt -- 训练 集合转成索引格式 en_word2id.json -- 语料中英文词汇表 zh_word2id.json -- 语料中中文词汇表

2022-03-13

数据集-柑橘果目标检测数据集-labelme,580张目标检测图片,包含树上柑橘On-tree和树下柑橘果Under-tree的标注

数据集介绍:https://blog.csdn.net/qq_21386397/article/details/147432642 包含580张目标检测图片和标签数据,数量类别: ○ 树上柑橘(On-tree):标注为健康挂果状态的柑橘 ○ 树下柑橘(Under-tree):标注为已掉落或采摘后放置的柑橘 标签统计: { "im_count": 579, # 图片数量 "label_count": { "on": 25319, # 在树上的标签数量 "under": 17334 # 在树下的标签数量 }, } 该数据集特别适用于: ● 果园自动化收获系统开发; ● 柑橘成熟度与掉落率监测; ● 基于视觉的产量预估算法研究; ● 农业机器人视觉导航系统训练;

2025-04-22

数据集-苹果果目标检测-labelme-4430

包含4430张苹果目标检测图片和标签数据。 数据集介绍: https://blog.csdn.net/qq_21386397/article/details/147465394

2025-04-23

数据集-part1-沥青路面缺陷目标检测数据集-labelme-6000

part1包含2000张图片,全部6000张。 当前道路养护领域面临几个显著挑战: 1. 数据稀缺性:大多数机构缺乏高质量的标注数据集来训练可靠的缺陷检测模型 2. 类别不平衡:现有数据集往往只关注裂缝等常见缺陷,忽视修补区域和井盖等重要类别 本沥青路面缺陷目标检测数据集提供6,000张精心标注的高质量图像,包含6个关键类别:裂缝、裂缝修补、坑洞、坑洞修补、井盖及其他。 数据集介绍: https://mp.csdn.net/mp_blog/creation/success/147170602

2025-04-12

数据集-part3-沥青路面缺陷目标检测数据集-labelme

part3包含2000张图片,全部6000张。 当前道路养护领域面临几个显著挑战: 1. 数据稀缺性:大多数机构缺乏高质量的标注数据集来训练可靠的缺陷检测模型 2. 类别不平衡:现有数据集往往只关注裂缝等常见缺陷,忽视修补区域和井盖等重要类别 本沥青路面缺陷目标检测数据集提供6,000张精心标注的高质量图像,包含6个关键类别:裂缝、裂缝修补、坑洞、坑洞修补、井盖及其他。 数据集介绍: https://mp.csdn.net/mp_blog/creation/success/147170602

2025-04-12

数据集-part2-沥青路面缺陷目标检测数据集-labelme

part2包含2000张图片,全部6000张。 当前道路养护领域面临几个显著挑战: 1. 数据稀缺性:大多数机构缺乏高质量的标注数据集来训练可靠的缺陷检测模型 2. 类别不平衡:现有数据集往往只关注裂缝等常见缺陷,忽视修补区域和井盖等重要类别 本沥青路面缺陷目标检测数据集提供6,000张精心标注的高质量图像,包含6个关键类别:裂缝、裂缝修补、坑洞、坑洞修补、井盖及其他。 数据集介绍: https://mp.csdn.net/mp_blog/creation/success/147170602

2025-04-12

快递包裹目标检测数据集-2919-labelme

这是一套专门针对快递包裹目标检测的训练数据集 包含大量快递包裹相关的JPEG图像及对应的 labelme 格式标注文件 这些资源对于开发和训练快递行业中的物体识别、自动分拣系统等AI应用至关重要 图片数量 2919 张。 标签包括包裹、人、车辆、大车、狗等。 标签统计如下: { "im_count": 2919, # 图片数量 "label_count": { # 标签数据 "baoguo": 4549, # 包裹 "ren": 2485, # 人 "dache": 8, # 单车 "che": 31, # 车 "gou": 18, # 狗 "danche": 5 # 大车 }, "labels": { "80": "baoguo", "0": "ren", "2": "che", "16": "gou", "1": "danche", "7": "dache" }, }

2025-04-05

柑橘病虫害图像分类数据集OrangeFruitDataset-part1-2000张,柑橘溃疡病Citrus canker、柑橘黑点病melanose和健康柑橘3类别

第1部分: 柑橘病害种类繁多,其中柑橘溃疡病Citrus canker和柑橘黑点病melanose对柑橘的危害尤为严重,如同隐藏在暗处的 “杀手”,时刻威胁着柑橘的健康生长。这些病害不仅对柑橘树的生长和发育造成了严重的影响,导致柑橘产量大幅下降,品质变差,还使得果农们的辛勤付出付诸东流,经济损失惨重。 数据包含 3 类图像: 柑橘溃疡病(Citrus canker):700 张图片; 柑橘黑点病(melanose):600 张图片; 健康柑橘图片:700 张图片。

2025-04-09

柑橘病虫害图像分类数据集OrangeFruitDataset-part2-2000张,柑橘溃疡病Citrus canker、柑橘黑点病melanose和健康柑橘3类别

第2部分: 柑橘病害种类繁多,其中柑橘溃疡病Citrus canker和柑橘黑点病melanose对柑橘的危害尤为严重,如同隐藏在暗处的 “杀手”,时刻威胁着柑橘的健康生长。这些病害不仅对柑橘树的生长和发育造成了严重的影响,导致柑橘产量大幅下降,品质变差,还使得果农们的辛勤付出付诸东流,经济损失惨重。 数据包含 3 类图像: 柑橘溃疡病(Citrus canker):700 张图片; 柑橘黑点病(melanose):600张图片; 健康柑橘图片:700 张图片。

2025-04-09

柑橘病虫害图像分类数据集OrangeFruitDataset-part3-2000张,柑橘溃疡病Citrus canker、柑橘黑点病melanose和健康柑橘3类别

第3部分: 柑橘病害种类繁多,其中柑橘溃疡病Citrus canker和柑橘黑点病melanose对柑橘的危害尤为严重,如同隐藏在暗处的 “杀手”,时刻威胁着柑橘的健康生长。这些病害不仅对柑橘树的生长和发育造成了严重的影响,导致柑橘产量大幅下降,品质变差,还使得果农们的辛勤付出付诸东流,经济损失惨重。 数据包含 3 类图像: 柑橘溃疡病(Citrus canker):700 张图片; 柑橘黑点病(melanose):600 张图片; 健康柑橘图片:700 张图片。

2025-04-09

柑橘病虫害图像分类数据集OrangeFruitDataset-part4-2600张,柑橘溃疡病Citrus canker、柑橘黑点病melanose和健康柑橘3类别

第4部分: 柑橘病害种类繁多,其中柑橘溃疡病Citrus canker和柑橘黑点病melanose对柑橘的危害尤为严重,如同隐藏在暗处的 “杀手”,时刻威胁着柑橘的健康生长。这些病害不仅对柑橘树的生长和发育造成了严重的影响,导致柑橘产量大幅下降,品质变差,还使得果农们的辛勤付出付诸东流,经济损失惨重。 数据包含 3 类图像: 柑橘溃疡病(Citrus canker):900 张图片; 柑橘黑点病(melanose):800 张图片; 健康柑橘图片:900 张图片。

2025-04-09

道路裂缝分割检测CrackSegmentationDataset-11200

该数据集包含从12个可用的裂纹分割数据集合并而成的约11200张图像。 将每个图像的名称前缀分别是图像原来的数据集。 所有图像都被调整为(448,448)的大小。 train和test 分别是训练和测试图像,测试图像一共 1695 张,训练图像一共 9603 张; train和test 结构是一样的,都包含了 images 和 masks 文件夹,其中images 包含了 jpg 图片和对于的 JSON 标签文件,masks 包含分割的掩码图像。

2025-04-06

CrackForest实例分割检测数据集-118-masks和labelme标签格式,专门为道路裂缝检测和路面状况评估而设计的高质量图像

CrackForest是一个专门为道路裂缝检测和路面状况评估而设计的高质量图像数据库。 该数据集包含了156张带注释的道路裂缝图像和标注信息文件,能够为研究人员和开发者提供丰富的数据资源,助力他们在这一领域的研究和应用开发。这些图像不仅捕捉了城市路面的真实状况,还通过专业的注释技术,标记了裂缝的位置和形态。 该数据集具有以下显著特点: ● 高质量图像:156张高分辨率图像,真实反映城市路面的裂缝状况。 ● 详细注释:每张图像都经过专业注释,标记了裂缝的具体位置和形态。 ● 多样性:数据集涵盖了不同光照条件、路面类型和裂缝形态,确保了数据的多样性和代表性。 数据集包含 images 和 masks 文件夹。 其中 images 包含图片 JPG 格式和标签文件 JSON,可以使用X-AnyLabeling-CPU-v2.5.0.exe 工具打开。 masks 文件夹是实例分割的掩码图像图。

2025-04-05

17 个类别的花卉数据集,贝母花-、雏菊、番红花、风信子、向日葵、水仙花、野百合、虎皮百合等

17 个类别的花卉数据集,每个类别有 80 张图像。 类别有:贝母花-fritillary、雏菊-daisy、番红花-crocus、风信子-bluebell、虎皮百合-tigerlily、款冬-coltsfoot、驴蹄草-cowslip、毛茛-buttercup、蒲公英-dandelion、三色紫罗兰-pansy、水仙花-daffodil、向日葵-sunflower、雪花莲-snowdrop、野百合-lilyvalley、银莲花-windflower、郁金香-tulip、鸢尾属-lris。 花卉是英国常见的一些花卉。这些图像具有较大的尺度、姿势和光线变化,并且还存在类内图像变化较大且与其他类非常相似的类

2024-03-13

道路坑洼目标检测-665-label,小型数据集常常用于学习和学术研究

目标:从道路图像中检测坑洼; 应用:检测道路地形和坑洼可实现平稳行驶,小型数据集常常用于学习和学术研究; 详细信息: 665 张图、1740个在坑洼处标注的图像数据集,可直接用于坑洼目标检测模型训练。

2025-04-05

part01吸烟动作目标检测的数据集,labelme标注,类别有:嘴上吸着烟smoking、手拿着烟smoking-hand

用于吸烟动作目标检测的数据集。 数据集使用labelme标注。 数据集类别分为:嘴上吸着烟smoking、手拿着烟smoking-hand。 (1)吸烟动作检测part01有1115张图像。 (2)其他部分陆续更新

2024-03-17

labelme当前最新Windows版本541

labelme是图形图像注释工具,它是用Python编写的,并将Qt用于其图形界面

2024-03-15

5种花卉分类数据集(百合-Lilly、兰花-Orchid、莲华-Lotus、向日葵-Sunflower、郁金香-Tulip)

图片分为五类:百合-Lilly、兰花-Orchid、莲华-Lotus、向日葵-Sunflower、郁金香-Tulip。 每类约有1000张照片。 照片分辨率较小,大部分约为320x240像素。 图片不是缩放到一个尺寸,有不同的比例。

2024-03-13

YOLOv9论文,2024.02发布

YOLOv9来了!还在用YOLOv8、YOLOv7、YOLOv5做毕设的同学开始颤抖了。。。 本文提出可编程梯度信息(PGI)和基于梯度路径规划的通用高效层聚合网络(GELAN),最终铸成YOLOv9目标检测全新工作!性能表现SOTA!在各个方面都大大超过了现有的实时目标检测器,优于RT DETR、YOLOv8等网络,代码刚刚开源!

2024-02-26

大模型综述(中文版)- 研究细节非常详细

1. 大模型的资源 2. 预训练 3. 微调 4. 应用 5. 评测 资料来源: https://github.com/RUCAIBox/LLMSurvey.git https://link.zhihu.com/?target=https%3A//arxiv.org/pdf/2303.18223.pdf

2023-08-10

数据集健康和块状病牛healthy-lumpy-cows,包含块状病、健康牛图片分别500张

healthy cows lumpy cows

2023-07-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除