AI助力水体保护区无人值守垂钓智能预警,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建水体保护区场景下无人值守垂钓智能检测预警系统

保护我们赖以生存的自然生态环境,无疑是一项意义深远且需要长期坚持的任务。自然界的生态系统,由水、气、森林、土壤等多要素组成,它们相互依存、相互影响,共同维系着地球的生态平衡。然而,在人类活动的影响下,这一平衡正遭受着前所未有的挑战。因此,加强环境监管治理,保护我们的自然资源,显得尤为迫切和重要。在以往的环境监管治理中,针对大气的工作相对较多,这主要源于大气污染对人类生活的直接影响更为显著。然而,近些年来,随着对水体生态重要性的认识加深,以及水体污染问题的日益严重,针对水体生态的监管治理力度也在逐年加大。一方面,我们要管水治水,通过科学的方法和手段解决水体污染的问题;另一方面,在指定的水体区域或者一些保护区,我们需要严格禁止人员进行垂钓等活动,以保护水生生物的多样性和生态平衡。
然而,传统的依靠地方巡查员进行监管的方式,往往受限于气象、天气、人力资源等问题,无法做到长时间稳定高效的执勤。这种情况下,智能化技术的应用就显得尤为重要。随着人工智能技术的快速发展,越来越多的传统行业开始探索接入AI智能化技术来提升效率。在水体保护区禁止垂钓的场景中,智能化技术同样可以发挥巨大的作用。我们可以借助于区域内安装部署好的摄像头来采集构建高质量的数据集。这些摄像头可以全天候、全方位地监控水体保护区的情况,捕捉到任何可能的垂钓行为。通过先进的图像识别和处理技术,我们可以对这些数据进行深入的分析和处理,从而开发出智能化的无人值守垂钓预警模型。这一预警模型能够全天候动态智能监测画面区域,对于发现的垂钓行为,及时将预警信息推送到管理指挥部平台。这样,管理部门就可以迅速做出反应,安排调度专有巡查人员进行精准执法处理。这种方式不仅提高了工作效率,降低了无效的巡查次数,还能够及时精准地预警问题,有效防止了垂钓行为对水体生态的破坏。智能化技术的应用,无疑为水体保护区的管理带来了新的思路和方向。它不仅提升了管理效率,还减轻了巡查人员的工作负担。他们不再需要长时间、高强度地进行巡查,而是可以在接到预警信息后,有针对性地进行执法处理。这种方式既提高了工作效率,又保证了执法的精准性。

本文正是基于这样的构想设计,想要从实验的角度开发实践水体保护区无人值守场景下的智能化检测识别分析系统,首先看下实例效果:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

训练数据配置文件如下:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/


# number of classes
nc: 2

 
# class names
names: ['fishingRod', 'person']

我们开发构建了yolov3全系列的参数模型,包含:yolov3-tiny、yolov3和yolov3-spp,实验阶段保持完全相同的参数设置,等待整体实验完成我们来对其进行整体的性能评估测试。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

从整体实验结果上来看:tiny系列的模型被拉开了明显的差距,相比之下效果最差,yolov3和yolov3-spp两款模型则达到了相近的水平。最终选择使用yolov3来作为线上推理模型。接下来详细看下yolov3模型的结果详情。

【离线推理实例如下】

【混淆矩阵】

【PR曲线】

【训练可视化】

除了智能化技术的加持之外,还需要加强科研投入,探索更多更有效的水体生态保护措施。如:研究如何更好地治理水体污染,恢复水体的自净能力;探索保护水生生物的多样性,维护水体生态的平衡等。智能化技术的应用只是水体保护区管理的一部分。我们还需要加强宣传教育,提高公众的环保意识。只有让每个人都意识到保护生态环境的重要性,才能形成全社会共同参与环境保护的良好氛围。同时,我们还需要完善法律法规,加大对违法行为的处罚力度。对于违反规定进行垂钓等行为的人员,我们应该依法进行处罚,以儆效尤。在实际应用中,智能化技术还可以与其他先进科技相结合,共同为水体保护区的管理和保护提供支持。如:可以利用无人机进行空中巡查,与地面摄像头形成立体监控网络;可以利用大数据分析技术对水体质量进行实时监测和预警;可以利用物联网技术实现水体保护区的智能化管理等。
保护自然生态环境是我们每个人的责任和义务。在水体保护区禁止垂钓的管理中,智能化技术的应用为我们提供了新的思路和方向。我们应该充分利用这一先进技术,提升管理效率,保护水体生态的平衡和多样性。同时,我们还需要加强宣传教育、完善法律法规、加强科研投入等多方面的工作,共同为保护我们的自然生态环境而努力。展望未来,随着科技的不断进步和应用场景的不断拓展,智能化技术在水体保护区管理中的应用将会更加广泛和深入。我们有理由相信,在智能化技术的助力下,我们的水体生态环境将会得到更好的保护和改善。同时,我们也期待着更多的创新技术和理念能够应用到环境保护领域中来,共同为我们的子孙后代留下一个更加美丽、宜居的地球家园。

  • 11
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值