二分的模板
算法思路:算法思路:假设目标值在闭区间[l, r]中, 每次将区间长度缩小一半,当l = r时,我们就找到了目标值。
整型模板1(要得到尽可能小的情况):
当我们将区间[l, r]划分成[l, mid]和[mid + 1, r]时,其更新操作是r = mid或者l = mid + 1;,计算mid时不需要加1。
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
return l;
}
整型模板2(要得到尽可能大的情况):
当我们将区间[l, r]划分成[l, mid - 1]和[mid, r]时,其更新操作是r = mid - 1或者l = mid;,此时为了防止死循环,计算mid时需要加1。
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
浮点型模板
如果是浮点数的话,题目中如果说保留到小数点第k位的话,改一下while条件为r-l<10^-(k+2),还有l=mid和r=mid的时候不用加1
while(r-l>1e-4)
{
int mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
剪绳子
题目描述
有N根绳子,第i根绳子长度为Li
,现在需要M根等长的绳子,你可以对N根绳子进行任意裁剪(不能拼接),请你帮忙计算出这M根绳子最长的长度是多少。
输入格式
第一行包含2个正整数N、M,表示原始绳子的数量和需求绳子的数量。
第二行包含N个整数,其中第 i 个整数Li
表示第 i 根绳子的长度。
输出格式
输出一个数字,表示裁剪后最长的长度,保留两位小数。
数据范围
1≤N,M≤100000
,
0<Li<109
输入样例:
3 4
3 5 4
输出样例:
2.50
样例解释
第一根和第三根分别裁剪出一根2.50长度的绳子,第二根剪成2根2.50长度的绳子,刚好4根。
思路
这道题就是经典的二分,把求解问题转换成了判定问题,依次枚举从0到1e9的所有符合条件尽可能大的浮点数就是所求的结果,用一个check函数判定能不能划分为m个,符合条件就令l=mid,再找更大的,二分结束就可以找到最大的浮点数值
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[100005];
bool check(double mid)
{
int ans=0;
for(int i=0;i<n;i++)
ans+=a[i]/mid;
return ans>=m;
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
cin>>a[i];
double l=0,r=1e9;
while(r-l>1e-4)
{
double mid=(l+r)/2;
if(check(mid)) l=mid;//为了得到尽可能大的数
else r=mid;
}
cout<<"\n";
printf("%.2lf",r);
}
分巧克力
题目描述
儿童节那天有 K
位小朋友到小明家做客。
小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N
块巧克力,其中第 i 块是 Hi×Wi
的方格组成的长方形。
为了公平起见,小明需要从这 N
块巧克力中切出 K
块巧克力分给小朋友们。
切出的巧克力需要满足:
形状是正方形,边长是整数
大小相同
例如一块 6×5
的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3
的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 N
和 K
。
以下 N
行每行包含两个整数 Hi 和 Wi
。
输入保证每位小朋友至少能获得一块 1×1
的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
数据范围
1≤N,K≤105
,
1≤Hi,Wi≤105
输入样例:
2 10
6 5
5 6
输出样例:
2
思路
就是用模板2就行了,直接上代码
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
typedef pair<int,int> PII;
PII p[100005];
bool check(int mid)
{
int res=0;
for(int i=0;i<n;i++)
{
res+=p[i].first/mid*(p[i].second/mid);
}
return res>=m;
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
cin>>p[i].first>>p[i].second;
}
int l=1,r=1e5;
while(l<r)
{
int mid=(l+r+1)/2;
if(check(mid)) l=mid;
else r=mid-1;
}
cout<<r;
}