【机器学习01】机器学习,大数据云计算,再不学就out了


什么是机器学习

利用计算机从历史数据中找出规律,并把这些规律用到对未来不确定场景的决策
从这句话我们知道2点:

  • 他是一种解决未来不确定因素的方法工具【比如公司明年的销量情况】
  • 通过什么样的手段呢,计算机挖出的历史数据规律【有两种情况一种是机器挖–>机器学习,另一种是人去挖–>数据分析后者呢比较依赖人也就是现在的数据分析师,前者是想完全靠机器不需要人,这TM就叼了】

其实找规律的过程就是以概率论与数理统计的为基础,通过可视化(函数图)将历史数据展示在人们视野中。

为什么火

  • 在大数据的驱动下
  • 数据量变大,只有靠机器学习才能很主观的决策未来数据,人已经变得客观了

业务系统发展的历史

  • 开始基于专家的经验
  • 基于统计—-分纬度统计
  • 机器学习—-在线学习【现在机器学习主要有两种处理方式,一种是离线就是晚上对当天的数据进行批处理,第二天再用新生成的模型处理业务,另一种就是在线学习,即随时立刻做出相应生成模型,处理业务,实时的数据收索用得较多】

生活应用

在学习机器学习之前我们得看看机器到底为我们生活带来了什么好处,我们才决定学不学,学了能怎么用。

啤酒加尿片【购物篮分析,关联规则】

这里写图片描述

上图说的是有个哈儿国,数据分析师发现在他们那个荡荡头,这种经常一起被买,然后他们就调查数据统计,市场调研,发现一般有宝宝的家庭都是男的去买尿片,但是不能亏了自己晒,就买了啤酒,
那些牛逼的人通过传说的购物篮分析,关联规则(其实就是这件事,装逼说得深沉一点)实现搭配销售,结果大大促销,让数据分析变成了莽莽,嘿嘿

用户细分精准营销【聚类】

这里写图片描述

你就说上面图弄熟不熟,what are yuo 弄啥呢!!全球通针对出差泡妹妹的人,动感地带针对学生娃娃,耍朋友都发短信,神州行我看行当然是白领经常打电话业务忙裸还有最后一个我TM怎么没见过,反正就是细分针对不同人群指定相关规则

这就是聚类的强大了,把用户信息进行分类,人们再根据具体消费特征做相应的调整

垃圾邮件【朴素贝叶斯】

信用卡欺诈【决策树】

你要贷款银行做风险识别看你有么的还款能力,就要用到起,用机器学习算法决策树就ok

百度收索排列顺序【ctr预估】

百度收索很依赖机器学习,使用ctr预估估算出每条可能点击的概率然后给出你最后可能点的那个广告拍成先后顺序

淘宝推荐商品【协同过滤】

当你买了一个东西后淘宝经常给你推荐估计你会买的东西,这里用到的算法就是机器学习里 的协同过滤

自然语言处理

  • 情感分析 ,比如你购买商品后的评论可推出你的情感
  • 实体识别,如:文章中人名,地名等提出来分析

图像识别【深度学习】

识别图片上面的东西是啥子鬼

除了上面的还有像 语言识别,个性化医疗,情感分析,人脸识别,自动驾驶,智慧机器人,
私人虚拟助理,手势控制,视屏内容自动识别
机器实时翻译,范围太广,有点吼不住!!啧啧啧

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Tomasyb/article/details/72846280
个人分类: 【机器学习】
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭