数学建模作业3

本文探讨了三个实际问题的优化解决方案。第一个是工厂如何安排发动机生产以最小化总费用,考虑了生产与存储成本。第二个是钢管下料问题,通过设定切割模式和限制条件,找到最小费用的切割方案。第三个是货机货物装载问题,旨在最大化利润,同时满足各货舱的质量和体积限制。所有问题都通过数学建模和优化算法得到了解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台。每季度的生产费用为f{x)=ax+bx2(元),其中x是该季生产的台数。若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元。已知厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问工厂应如何安排生产计划,才能既满足合同又使总费用最低?

解:

记第一二三季度分别生产x1、x2、x3台机器

季度费用
50x1+0.2x1x1+4(x1-40)
50x2+0.2x2x2+(x1-40+x2-60)4
50x3+0.2x3*x3

总费用为:

50x1+0.2x1x1+4(x1-40)+50x2+0.2x2x2+(x1-40+x2-60)4+50x3+0.2x3*x3

约束条件为:

x1>=40; x2+x1-40>=60; x3+x2-60+x1-40>=80; x1<=100; x2<=100; x3<=100;

运行结果如下:

 

总费用最小为11280元,其中第一季度生产50台,第二季度生产60台,第三季度生产70台。

二、钢管下料问题:某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售。从钢管厂进货得到的原材料的长度都是1850mm, 现在- -顾客需要15根290mm、28 根315mm、21根350mm和30根455mm的钢管。为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10 增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm,为了使总费用最小,应该如何下料?

解:

设xi(i=1,2,3,4)分别为方式i切割钢管的数量,ri j (i=1,2,3,4;j=1,2,3,4)分别为一根钢管用方式i切割290mm(j=1)、315mm(j=1)、350mm(j=1)、455mm(j=1)的数量。

总费用为:

min=1.1x1+1.2x2+1.3x3+1.4x4;

其中:

x1>x2; x2>x3; x3>x4;

满足顾客需求:

r11x1+r21x2+r31x3+r41x4>=15; r12x1+r22x2+r32x3+r42x4>=28; r13x1+r23x2+r33x3+r43x4>=21; r14x1+r24x2+r34x3+r44x4>=30;

一根原料钢管最多生产5根产品:

r11+r12+r13+r14<=5; r21+r22+r23+r24<=5; r31+r32+r33+r34<=5; r41+r42+r43+r44<=5;

每种切割模式下的余料浪费不能超过100mm:

r11290+r12315+r13350+r14455>=1750; r11290+r12315+r13350+r14455<=1850; r21290+r22315+r23350+r24455>=1750; r21290+r22315+r23350+r24455<=1850; r31290+r32315+r33350+r34455>=1750; r31290+r32315+r33350+r34455<=1850; r41290+r42315+r43350+r44455>=1750; r41290+r42315+r43350+r44455<=1850;

钢管数量下界为:(15x290+28x315+21x350+30x455)/1805=19根

x1+x2+x3+x4>=19;

钢管数量上界为:(任选一种可行方案)

x1+x2+x3+x4<=32;

注意:根数为整数。

lingo运行结果为:

 

最小费用为21.5。

模式一14根,切290mm1根,切315mm2根,切350mm0根,切455mm2根。

模式二4根,切290mm0根,切315mm0根,切350mm5根,切455mm0根。

模式三1根,切290mm2根,切315mm0根,切350mm1根,切455mm2根。

模式四0根,切290mm1根,切315mm1根,切350mm2根,切455mm1根。

三.某架货机有三个货舱:前仓、中仓、后仓。三个货舱所能装载的货物的最大质量和体积都有限制,如下表1所示。并且为了保持飞机的平衡,三个货舱中实际装载货物的质量必须与其最大容许质量成比例。现有四类货物供该货机本次飞行装运,其有关信息如下表2所示,表中最后一列是装运后所获得的利润。问如何安排装运,使该货机本次飞行获利最大?

 

解:

设xi j(i=1,2,3,4;j=1,2,3)分别为货物i装到前(j=1)中(j=2)后(j=3)仓的吨数。

获利为:

max=(x11+x12+x13) * 3100+(x21+x22+x23) * 3800+(x31+x32+x33) * 3500+(x41+x42+x43) * 2850;

三个货舱中实际装载货物的质量与其最大容许质量成比例:

x12+x22+x32+x42>x11+x21+x31+x41;

x11+x21+x31+x41>x13+x23+x33+x43;

三个货舱所能装载的货物的最大质量和体积都有限制:

x11+x21+x31+x41<=10;

x11 * 480+x21 * 650+x31 * 580+x41 * 390<=6800;

x12+x22+x32+x42<=16;

x12 * 480+x22 * 650+x32 * 580+x42 * 390<=8700;

x13+x23+x33+x43<=8;

x13 * 480+x23 * 650+x33 * 580+x43 * 390<=5300;

货物质量有限制:

x11+x12+x13<=18;

x21+x22+x23<=15;

x31+x32+x33<=23;

x41+x42+x43<=12;

lingo求解如图:

 

最大利润为121515.8,

前仓装货物一0t、装货物二7t、装货物三3t、装货物四0t;

中仓装货物一0t、装货物二0t、装货物三12.9t、装货物四3t;

后仓装货物一0t、装货物二8t、装货物三0t、装货物四0t。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值