带刀的骑士
码龄5年
关注
提问 私信
  • 博客:10,848
    10,848
    总访问量
  • 24
    原创
  • 2,022,254
    排名
  • 2
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-02-25
博客简介:

Tomswordyan的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得1次评论
  • 获得11次收藏
创作历程
  • 26篇
    2020年
成就勋章
TA的专栏
  • 机器学习实战学习心得
    25篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习实战(基于scikit-learn和TensorFlow)学习心得(28)--拉格朗日乘子法,多约束拉格朗日乘子法物理意义和KKT条件

1. 拉格朗日乘子法这个问题我们之前涉及到过,在机器学习实战(基于scikit-learn和TensorFlow)学习心得(23)--逻辑回归 Logistic Regression的时候我们把带约束条件的方程通过拉格朗日乘子法合并为了一个方程.拉格朗日乘子法具体是什么样的呢?我们看这么一个式子在下面两个约束条件的情况下求得f的最小值.求最小值其实就是求偏导数等于0的点.如果只...
原创
发布博客 2020.03.14 ·
920 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(27)--Nonlinear SVM Classification 非线性支持向量机,Polynomial Kern

向我们上一篇说的,SVM只能处理线性的分类,可是我们生活中很少有完美线性的东西,当碰到这种非线性问题得时候,我们可以用提高维度等等各种手段把非线性转为线性.一下图片转载自放羊的水瓶看上图,两种class交叉存在,不存在一条完美的直线能使两种class被分出来.如果要强行使用SVM的话会使模型性能极具下降,甚至到不能使用的情况.这时给原本的features加上polynomial fea...
原创
发布博客 2020.03.12 ·
324 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(26)--Support Vector Machines 支持向量机基础知识

支持向量机(SVM)是功能强大且用途广泛的机器学习模型,能够执行线性或非线性分类,回归甚至离群值检测。它是机器学习中最受欢迎的模型之一。 SVM特别适合对复杂的中小型数据集进行分类。1. SVM classification现在回到线性回归看一个例子先看左边的图,可以看见紫线和橙线都能很好的区分两个类别,但是假设有新的instance输入,系统不一定能做出正确的判断,因为这两...
原创
发布博客 2020.03.12 ·
334 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(25)--softmax回归及其计算公式

softmax regission好,接下来说一说softmax,上一个随笔介绍了logistic 回归,但是logistic基本上都是用在二分类问题上,也就是他能分辨出一个样本究竟是A还是B,但如果多出一个C选项的话系统就不能很好的工作了.而softmax就是用来处理多分类问题得.softmax regression的思想是这样的,当给定实例x时,Softmax回归模型首先为每个类别k计...
原创
发布博客 2020.03.12 ·
397 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(24)--CROSS ENTROPY 交叉熵和logit

1. logitlogit又称为log-odds,odds又译为胜算.他的含义是事件发生的概率与事件不发生的概率之比如果一个事件发生的概率是p,那么不发生的概率就是1-p.则这个事件的odds是p/(1-p)那么log-odds就是log(p / (1 – p)).2.CROSS ENTROPY 交叉熵交叉熵起源于信息论。假设你想每天高效地传输有关天气的信息。如果有八个选项(...
原创
发布博客 2020.03.10 ·
539 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(23)--逻辑回归 Logistic Regression

我看了很多的资料,大部分的资料将这款都是从前向后讲,先将公式,讲理论,然后再说怎么做,搞的人一头雾水.我这次从后往前讲,先将怎么做,再将为什么这么做.首先我们先看单纯的线性回归方程:如果我们用矩阵的形式表示这个函数就是那么y的取值范围是什么?是[].按照我之前说的,我们先讲我们要怎么做,再讲我们为什么要这么做.我们想把y的取值范围变成[0,1]怎么办呢?很简单,...
原创
发布博客 2020.03.09 ·
403 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(22)--Elastic Net以及regression的选择

Elastic Net是介于Ridge回归和Lasso回归之间的中间回归。正则项是Ridge和Lasso的正则项的简单混合,可以控制混合比r。当r = 0时,Elastic Net等效于Ridge回归,当r = 1时,它等效于Lasso回归。他的cost function是:那么什么时候应该使用普通的线性回归,什么时候又用Ridge,Lasso或Elastic Net?至少一点正则化几乎是必...
原创
发布博客 2020.03.08 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

原创 机器学习实战(基于scikit-learn和TensorFlow)学习心得(21)--Lasso Regression, ridge regression,范数以及范数等值线

从前面两个心得来看.两种regression其实都是给cost function加一个惩罚项,不同的是lasso加的是一个一次累加惩罚项,而ridge regression加的是一个二次累加惩罚项.用比较数学的话来说lasso加了一个l1范数的惩罚项而ridge加了一个l2范数的惩罚项.先来说说什么是范数1. 范数范数是一个长度概念,基本形态为当p=1时就称为l1范数,写作就是每个...
原创
发布博客 2020.03.08 ·
622 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(20)--Lasso Regression,梯度下降法

与ridge regression一样,不过加的正则项不一样下图是lasso regression对不同的回归在不同的a值情况下对比与ridge regression相比,lasso可能会使某一个θ变成0,具体原因下一个学习笔记会写道.而lasso成本函数在θi= 0时是不可微的(对于i = 1,2,…,n),所以我们要使用次梯度矢量g代替任何θ= 0,让梯度下降仍然可以正常工作...
原创
发布博客 2020.03.08 ·
775 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(19)--Ridge Regression

如何避免回归方程overfit,有很多种方法,但比较常见而且容易实施的方法就是约束回归方程参数的取值范围.Ridge Regression, Lasso Regression, and Elastic Net就是三种约束每个feature占比的方法.(这里说的占比指的是y=0.1*x1+2*x2,这个方程中明显看到feature x2占比大(前面的系数大)).1.Ridge Regressi...
原创
发布博客 2020.03.07 ·
253 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(18)--Polynomial Regression 多项式回归和学习曲线

假设我们的系统散点是这样的从图中可以看出,这个分布形似二次函数,只单纯的使用线性回归去拟合数据是肯定不合适的.所以说我们要把单纯的一次线性回归扩展成多次多项式回归.如何使线性回归扩展成多项式回归呢?一种简单的方法是将每个feature都扩展为多次项,然后在此扩展上训练线性模型。原线性回归方程是:y=a(x1)+b(x2)+1二次多项式方程是:y=c(x1)^2 +d(x2)^2+a(x1...
原创
发布博客 2020.03.06 ·
424 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(17)--梯度下降法

当我们需要寻找多元线性函数回归方程的时候,除了直接计算法,通过多次梯度的迭代求得最优的theta值.batch Gradient Descent批次梯度下降法,这个下降法就是按部就班的来计算梯度,找切线位置通过几次迭代找到最优解.注意,上面的函数中包含theta,所以说我们要随机设一个初始值以便开始迭代.计算出cost function的梯度之后就可以向最小梯度的方向迭代了.但要注意的...
原创
发布博客 2020.03.06 ·
346 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(16)--最小二乘法求解线性回归以及多元线性回归参数

所谓线性回归方程其实就是最简单的一元方程,而我们需要做的就是找到那个最好的斜率使得这条线离所有的点的距离之和最小.用数学的说法是使所有点到直线的距离的均方差最小.上面是一组散点,我们想找到一条直线最契合这些散点的走向.上面就是这条曲线.那么我们相求得这个斜率就得使用正规方程组求解.这个方程式怎么来的呢?首先均方差的方程是根据矩阵的公式我们可以把MSE的公式拆成那么求得上...
原创
发布博客 2020.03.05 ·
292 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(15)--Receiver Operator Characteristic

从定义上来讲,ROC(Receiver Operator Characteristic)是以TPR = TP / (TP + FN) = Recall为x轴,FPR = FP / (FP + TN)为y轴做的图相。翻译成中文来说就是假设我们要从一堆图片中找到5这个数字的图片. TPR就是正确识别出5的图片数量除以所有5的数量.FPR就是被误以为是5但其实并不是5的图片的数量除以总的不是5的图片...
原创
发布博客 2020.03.02 ·
378 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(14)--Precision and Recall and F1

当我们考验一个classifier的好坏的时候,精准度并不是一个非常好的指标,对于不同的任务我们有两种衡量精准度的办法,precision(精确率)和recall(召回率)假设我们想要识别一组手写数字中的5从上图可知左上角是系统识别出来不是5而且标签也不是5的图片(正确的分类也叫true negative{TN})右上角是系统识别出来是5但是实际上不是5的图片,叫false positi...
原创
发布博客 2020.03.01 ·
332 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(13)--confidence interval

转载
转载
发布博客 2020.03.01 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(12)---cross-validation,超参的选取等杂记

这是一个很好的用来测试model是否好用的工具,可以在测试集量不够大的时候增加检测model是否好用的一种重要的方法.但c-v有利有弊.他会大幅度增加机器计算的负担以及大幅度延长调试时间.需要自我取舍....
原创
发布博客 2020.02.29 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(11)--数据的结构

读了上一篇文章中介绍的iris_data,其中有一些数据结构不是很清晰本篇介绍数据结构data数据就是上图中的da,指的是每一个instance的具体值feature_name指的是上图中的f_n指的是每种feature的名字target_name就是上图中的t_ntarget指的是每一个instance所对应的target的编号,上图中五个instance的类别都是setosa,所以他...
原创
发布博客 2020.02.28 ·
201 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(10)--Sklearn三大模型 - Transformer、Estimator、Pipeline

此篇心得引用自白尔摩斯
转载
发布博客 2020.02.28 ·
718 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习实战(基于scikit-learn和TensorFlow)学习心得(9)--one-hot encoding

当我们想在model里训练文字类的数据的时候,比如房子距离海边的距离这种描述(<1H OCEAN,INLAND,ISLAND,NEAR BAY, NEAR OCEAN)我们可以简单的给这五种描述赋值1-5,但结果却不好. 这五种其实是完全不同的五种类型,如果我们用1-5进行编码那么1跟2的相似度肯定要大于1跟5,机器就会产生错觉.为了避免这种误差.one-hot encoding就派上用场...
原创
发布博客 2020.02.27 ·
251 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多