鸣人和佐助

题目:
佐助被大蛇丸诱骗走了,鸣人在多少时间内能追上他呢?


已知一张地图(以二维矩阵的形式表示)以及佐助和鸣人的位置。地图上的每个位置都可以走到,只不过有些位置上有大蛇丸的手下,需要先打败大蛇丸的手下才能到这些位置。鸣人有一定数量的查克拉,每一个单位的查克拉可以打败一个大蛇丸的手下。假设鸣人可以往上下左右四个方向移动,每移动一个距离需要花费1个单位时间,打败大蛇丸的手下不需要时间。如果鸣人查克拉消耗完了,则只可以走到没有大蛇丸手下的位置,不可以再移动到有大蛇丸手下的位置。佐助在此期间不移动,大蛇丸的手下也不移动。请问,鸣人要追上佐助最少需要花费多少时间?
输入:
输入的第一行包含三个整数:M,N,T。代表M行N列的地图和鸣人初始的查克拉数量T。0 < M,N < 200,0 ≤ T < 10
后面是M行N列的地图,其中@代表鸣人,+代表佐助。*代表通路,#代表大蛇丸的手下。
输出:
输出包含一个整数R,代表鸣人追上佐助最少需要花费的时间。如果鸣人无法追上佐助,则输出-1。
样例:
输入
样例输入1
4 4 1
#@##
**##
###+

样例输入2
4 4 2
#@##
**##
###+

输出:
样例输出1
6

样例输出2
4

#include<bits/stdc++.h>
using namespace std;
int N, M, T, ans = -1;
char a[205][205];
int b[205][205];
int mov[][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
struct node{
    int x, y, t, s;
};
void bfs(int x, int y)
{
    queue<node> Q;
    Q.push({x, y, T, 0});
    while(Q.empty() == 0)
    {
        node p = Q.front(); Q.pop();
        for(int i=0; i<4; i++)
        {
            int xl = p.x + mov[i][0];
            int yl = p.y + mov[i][1];
            int tl = p.t;
            int sl = p.s;
            if(a[xl][yl] == '*' && tl > b[xl][yl])
            {
                b[xl][yl] = tl;
                Q.push({xl, yl, tl, sl+1});
            }
            else if(a[xl][yl] == '#' && tl-1 > b[xl][yl])
            {
                b[xl][yl] = tl-1;
                Q.push({xl, yl, tl-1, sl+1});
            }
            else if(a[xl][yl] == '+')
            {
                ans = sl + 1;
                return;
            }
        }
    }
}
int main()
{
    cin >> N >> M >> T;
    memset(b, -1, sizeof(b));
    int x = 0, y = 0;
    for(int i=1; i<=N; i++)
    {
        for(int j=1; j<=M; j++)
        {
            cin >> a[i][j];
            if(a[i][j] == '@')
            {
                x = i; y = j;
            }
        }
    }
    bfs(x, y);
    cout << ans << endl;
    return 0;
}/*
6 5 2
@****
####*
###**
#####
#####
###+#
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值