布隆过滤器原理及golang的快速实现

在处理大量数据时,布隆过滤器提供了一种高效的数据过滤方法,能够减少不必要的服务调用。该文介绍了布隆过滤器的概念、应用场景、工作原理,以及其假阳性和删除困难的特性。通过Golang实现,实验证明,在维持较低误判率(如0.0001)的情况下,相比于直接使用哈希表,布隆过滤器显著节省了存储空间。
摘要由CSDN通过智能技术生成

最近面临这样的场景:

2亿+数据需要调用后端服务A,业务需要1min处理完成,那么A服务承载的tps达到惊人的300w......必须想办法降低tps。

那么方案来了:1、把时间窗口拉长 2、降低待处理数据量。

拉长时间业务肯定是接受不了的,但是按照以往的经验,这部分数据并不全部需要处理,可能仅有一半真正需要调用A服务,所以我们可以把1亿数据给过滤掉。

这里我们维护一个布隆过滤器来进行数据的过滤。

1. 布隆过滤器的概念(百科)

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

2. 布隆过滤器应用场景

deny list

数据判重

预过滤

3. 原理

核心是一个长度为m的bit array和k个hash方法。

如下图,我们将一个newsid通过3个hash方法映射到长为8的数组上。

判断newsid是否存在,则看数组中3个位置是否都取到1:全为1,newsid可能存在于集合中;不全为1,newsid一定不存在于集合中。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值