【线性代数】2-1:解方程组(Ax=b)

原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-1转载请标明出处

Abstract: 通过不同的角度解方程组 A x = b Ax=b Ax=b
Keywords: row picture,column Picture,system of equations

解方程组

解方程组

x − 2 y = 1 3 x + 2 y = 11 x-2y=1 \\ 3x+2y=11 x2y=13x+2y=11
同志们,来解方程组,这是小学四五年级的数学题,也是线性代数的核心问题,解方程组,没错2x2的方程组没啥好说的,咔咔咔,就算粗来了,但是200x200的规模就有点大了,所以线性代数知识就有用了。

行视角(Row Picture)

不知道Picture这个词本身就是这种含义,还是Pro Strang喜欢这么说,Open Course和书上都是各种各样的Picture。
什么是Row Picture?
看到方程组中的两个等式么,每一行就是一个Picture,或者叫做Graph,在二维坐标系下,表现出来的是一条直线,同样第二个方程也是一条直线,直线上所有的点都满足方程,所以两条直线相交处就是方程组的解。

列视角(Column Picture)

这个是重点了,因为这个能引出后面一些列的知识,如果我们竖着看,把方程的系数排列整齐,把每个未知数的所有系数按照列向量排列:
x [ 1 1 ] + y [ − 2 2 ] = [ 1 11 ] = b x\begin{bmatrix} 1\\1 \end{bmatrix}+y\begin{bmatrix}-2\\2 \end{bmatrix}=\begin{bmatrix}1\\11 \end{bmatrix}=\textbf{b} x[11]+y[22]=[111]=b
怎么样,意外不意外,惊喜不惊喜,和前面讲到的Linear Combination是不是一毛一样,经过scale的两个向量相加得到另一个向量,接着我们就开始寻求scalars了。

***也就是我们通过寻找特定的scalars,来组合出我们规定的 b \textbf{b} b ***

在图像上,column picture 就变成了两个(或若干个)向量组合得到目标向量了,如图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QUFjzLwx-1592543741636)(https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/Math-Linear-Algebra-Chapter-2-1/column_picture.png)]

系数矩阵(Coefficient Matrix)

下面矩阵正式出场,我们把上面那两个系数向量挨着拼接起来,就能得到一个系数矩阵(Coefficient Matrix)
A = [ 1 − 2 3 2 ] A=\begin{bmatrix}1&-2\\3&2\end{bmatrix} A=[1322]
然后写成方程形式就是:
A x = b A\textbf{x}=\textbf{b} Ax=b
其中 x = [ x y ] \textbf{x}=\begin{bmatrix}x\\y\end{bmatrix} x=[xy],x 和 y就是上面的未知数。

矩阵乘向量(Matrix · Vector)

没错,上面的表示就是一个系数矩阵x向量,更通用一些,我们不在局限于上面的2x2的A,而是放飞自我的A,x也是放飞自我的x,那么

行Row

A x = [ r o w ( 1 ) ⋅ x r o w ( 2 ) ⋅ x … r o w ( n ) ⋅ x ] A\textbf{x}=\begin{bmatrix} row(1)\cdot \textbf{x}\\ row(2)\cdot \textbf{x}\\ \dots\\ row(n)\cdot \textbf{x}\\ \end{bmatrix} Ax=row(1)xrow(2)xrow(n)x
系数矩阵每一行和未知数向量点乘,得到的就是方程组的原始形式。

列Column

A x = c o l ( 1 ) x 1 + r c o l ( 2 ) x 2 + ⋯ + c o l ( n ) x n A\textbf{x}=col(1)x_1+rcol(2)x_2+\dots+col(n)x_n\\ Ax=col(1)x1+rcol(2)x2++col(n)xn
系数矩阵的每一列的线性组合

单位矩阵(Identity Matrix)

神奇矩阵 I I I I A = A IA=A IA=A看到没,这就是他牛的地方,和谁乘在一起都是谁
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ I=\begin{bmatr…
空白处全是0
左乘右乘都不变!

更多未知数

当n超过3的是后row picture就不能picture了,三维以上的就画不粗来了,当然column Picture也画不出来,但是多维向量更容易想象,并不是说column picture比row好,但是从线性代数角度,col的意义更丰富.

总结

这是线性最基础,最核心的思想之一,虽然简单,但却是所有知识的源头。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值