原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-1转载请标明出处
Abstract: 通过不同的角度解方程组
A
x
=
b
Ax=b
Ax=b
Keywords: row picture,column Picture,system of equations
解方程组
解方程组
x
−
2
y
=
1
3
x
+
2
y
=
11
x-2y=1 \\ 3x+2y=11
x−2y=13x+2y=11
同志们,来解方程组,这是小学四五年级的数学题,也是线性代数的核心问题,解方程组,没错2x2的方程组没啥好说的,咔咔咔,就算粗来了,但是200x200的规模就有点大了,所以线性代数知识就有用了。
行视角(Row Picture)
不知道Picture这个词本身就是这种含义,还是Pro Strang喜欢这么说,Open Course和书上都是各种各样的Picture。
什么是Row Picture?
看到方程组中的两个等式么,每一行就是一个Picture,或者叫做Graph,在二维坐标系下,表现出来的是一条直线,同样第二个方程也是一条直线,直线上所有的点都满足方程,所以两条直线相交处就是方程组的解。
列视角(Column Picture)
这个是重点了,因为这个能引出后面一些列的知识,如果我们竖着看,把方程的系数排列整齐,把每个未知数的所有系数按照列向量排列:
x
[
1
1
]
+
y
[
−
2
2
]
=
[
1
11
]
=
b
x\begin{bmatrix} 1\\1 \end{bmatrix}+y\begin{bmatrix}-2\\2 \end{bmatrix}=\begin{bmatrix}1\\11 \end{bmatrix}=\textbf{b}
x[11]+y[−22]=[111]=b
怎么样,意外不意外,惊喜不惊喜,和前面讲到的Linear Combination是不是一毛一样,经过scale的两个向量相加得到另一个向量,接着我们就开始寻求scalars了。
***也就是我们通过寻找特定的scalars,来组合出我们规定的 b \textbf{b} b ***
在图像上,column picture 就变成了两个(或若干个)向量组合得到目标向量了,如图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QUFjzLwx-1592543741636)(https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/Math-Linear-Algebra-Chapter-2-1/column_picture.png)]
系数矩阵(Coefficient Matrix)
下面矩阵正式出场,我们把上面那两个系数向量挨着拼接起来,就能得到一个系数矩阵(Coefficient Matrix)
A
=
[
1
−
2
3
2
]
A=\begin{bmatrix}1&-2\\3&2\end{bmatrix}
A=[13−22]
然后写成方程形式就是:
A
x
=
b
A\textbf{x}=\textbf{b}
Ax=b
其中
x
=
[
x
y
]
\textbf{x}=\begin{bmatrix}x\\y\end{bmatrix}
x=[xy],x 和 y就是上面的未知数。
矩阵乘向量(Matrix · Vector)
没错,上面的表示就是一个系数矩阵x向量,更通用一些,我们不在局限于上面的2x2的A,而是放飞自我的A,x也是放飞自我的x,那么
行Row
A
x
=
[
r
o
w
(
1
)
⋅
x
r
o
w
(
2
)
⋅
x
…
r
o
w
(
n
)
⋅
x
]
A\textbf{x}=\begin{bmatrix} row(1)\cdot \textbf{x}\\ row(2)\cdot \textbf{x}\\ \dots\\ row(n)\cdot \textbf{x}\\ \end{bmatrix}
Ax=⎣⎢⎢⎡row(1)⋅xrow(2)⋅x…row(n)⋅x⎦⎥⎥⎤
系数矩阵每一行和未知数向量点乘,得到的就是方程组的原始形式。
列Column
A
x
=
c
o
l
(
1
)
x
1
+
r
c
o
l
(
2
)
x
2
+
⋯
+
c
o
l
(
n
)
x
n
A\textbf{x}=col(1)x_1+rcol(2)x_2+\dots+col(n)x_n\\
Ax=col(1)x1+rcol(2)x2+⋯+col(n)xn
系数矩阵的每一列的线性组合
单位矩阵(Identity Matrix)
神奇矩阵
I
I
I,
I
A
=
A
IA=A
IA=A看到没,这就是他牛的地方,和谁乘在一起都是谁
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ I=\begin{bmatr…
空白处全是0
左乘右乘都不变!
更多未知数
当n超过3的是后row picture就不能picture了,三维以上的就画不粗来了,当然column Picture也画不出来,但是多维向量更容易想象,并不是说column picture比row好,但是从线性代数角度,col的意义更丰富.
总结
这是线性最基础,最核心的思想之一,虽然简单,但却是所有知识的源头。