Day29 (回溯算法 part03) 39. 组合总和 40.组合总和II 131.分割回文串

目录

39. 组合总和

回溯算法:

思考过程:

力扣代码:

40.组合总和II

回溯算法:

去重思路:

递归过程1️⃣2️⃣3️⃣:

力扣代码:

131.分割回文串

回溯算法:

思考过程:

力扣代码:

END


对于 39 和 40 两题,有两种不同的防止组合重复的方式。切割回文串不太理解。


39. 组合总和

题目链接:39. 组合总和

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], 
target = 7

输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:

输入: candidates = [2,3,5], 
target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], 
target = 1
输出: []


回溯算法:

  • 思考过程:

  • 如下树形结构能保证所有的组合都不相同:
  • 剪枝:if (sum > target) return; ( 在进入深一层递归前可以进行剪枝,但本文中没有采用。)
  • 力扣代码:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    int sum = 0;

    void backstacking(vector<int>& candidates, int target, int i) {
        if (sum > target) return;

        if(sum == target) {
            // 如果在此处对结果去重,会很麻烦,有没有可能在for循环中减少元素重复
            result.push_back(path);
            return;
        }

        for(i ; i < candidates.size(); i++) {
            path.push_back(candidates[i]);
            sum += candidates[i];
            backstacking(candidates, target, i); // 参见树形结构,同一个元素可以被重复选取
            path.pop_back();
            sum -= candidates[i];
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        backstacking(candidates, target, 0);
        return result;
    }
};

40.组合总和II

题目链接:40.组合总和II

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]


回溯算法:

  • 去重思路:

回看一下题目,元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。

所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重

为了理解去重我们来举一个例子:candidates = [1, 1, 2], target = 3(树形结构如下图)(方便起见candidates已经排序了)

强调一下,树层去重的话,需要对数组排序!

  • 递归过程1️⃣2️⃣3️⃣:

startIndex = 0 i = 0 candidates[i] = 1

startIndex = 1 i = 1 candidates[i] = 1

startIndex = 2 i = 2 candidates[i] = 2

startIndex = 1 i = 2 candidates[i] = 2    回到上一层后,比较同层的元素有无重复

startIndex = 0 i = 1 candidates[i] = 1

startIndex = 0 i = 2 candidates[i] = 2

  • 力扣代码:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    int sum = 0;

    void backstacking(vector<int>& candidates, int target, int startIndex) {
       
        if (sum > target) return;

        if(sum == target) {
            result.push_back(path);
            return;
        }

        for(int i = startIndex; i < candidates.size(); i++) {

            // cout <<  "startIndex = " << startIndex << " i = " << i << " candidates[i] = " << candidates[i] << endl; // 打印

            // 要对同一树层使用过的元素进行跳过
            if(i > startIndex && candidates[i] == candidates[i-1])  continue; // 不懂,怎么判断是同一树层???

            path.push_back(candidates[i]);
            sum += candidates[i];
            backstacking(candidates, target, i+1); // 参见树形结构
            path.pop_back();
            sum -= candidates[i];
        }
    }
public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        sort(candidates.begin(), candidates.end()); // 排序
        backstacking(candidates, target, 0);
        return result;
    }
};


131.分割回文串

题目链接:131. 分割回文串

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

回文串 是正着读和反着读都一样的字符串。

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]

示例 2:

输入:s = "a"
输出:[["a"]]


回溯算法:

  • 思考过程:

  • 树形结构:

startIndex = 0 i = 0 str = a      [0, 0] 子串

startIndex = 1 i = 1 str = a      [1, 1]

startIndex = 2 i = 2 str = b      [2, 2]

startIndex = 1 i = 2

startIndex = 0 i = 1 str = aa    [0, 1]

startIndex = 2 i = 2 str = b      [1, 2]

startIndex = 0 i = 2

  • startIndex为切割线位置;
  • [startIndex, i] 就是要截取的子串;
  • 力扣代码:

class Solution {
private:
    vector<vector<string>> result;
    vector<string> path;

    bool isPalindrome(const string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s[i] != s[j]) {
                return false;
            }
        }
        return true;
    }

    void backstacking(const string& s, int startIndex) {
       
       // startIndex作为切割线,切到了字符串最后面,说明已经找到了一组分割方案了
        if (startIndex >= s.size()) {
            result.push_back(path);
            return;
        }

        for(int i = startIndex; i < s.size(); i++) {
            if (isPalindrome(s, startIndex, i)) { // 是回文子串      
                string str = s.substr(startIndex, i - startIndex + 1); // 获取[startIndex,i]在s中的子串
                path.push_back(str);
            } else {                // 如果不是则直接跳过
                continue;
            }
            backstacking(s, i+1);
            path.pop_back();
        }
    }
public:
    vector<vector<string>> partition(string s) {
        backstacking(s, 0);
        return result;
    }
};


END

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值