Day 27 回溯算法part03 : 39. 组合总和 40.组合总和II 131.分割回文串

39. 组合总和

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

提示:

  • 1 <= candidates.length <= 30
  • 2 <= candidates[i] <= 40
  • candidates 的所有元素 互不相同
  • 1 <= target <= 40
class Solution(object):
    def combinationSum(self, candidates, target):
        """
        :type candidates: List[int]
        :type target: int
        :rtype: List[List[int]]
        time: O(2^N)
        在最坏情况下,我们可以认为每个数字都有选择和不选择两种情况,因此时间复杂度为 
        O  (2^N),其中 N 是candidates的长度。
        space: O(M)
        最大的空间开销来自于递归的调用栈和保存结果的空间,递归的最大深度等于 target 的值
        除以 candidates 中的最小值,假设为 M,所以空间复杂度为 O(M),
        但如果考虑结果的空间,那么空间复杂度为 O(M + 结果的数量 * 平均长度)。
        
        在这种情况下,考虑到结果的数量可能非常大,并且不易准确估算,
        我们通常只考虑除结果外的其他部分的空间复杂度,因此空间复杂度为 O(M)。
        """

        output = []

        def backtrackng(first = 0, curr = [], sum_candidates = 0):
            # 终止条件:
            # 如果当前组合的和超过目标值,直接返回
            if sum_candidates > target:
                return
            # 如果当前组合的和等于目标值,将当前组合加入到结果集中
            if sum_candidates == target:
                output.append(curr[:])
                return

            # 从当前数字开始遍历每个候选数字
            for i in range(first, len(candidates)):
                # 剪枝
                # 如果加上当前数字超过目标值,直接break,因为后面的数字更大,
                # 加上后面的数字更不可能满足条件
                if sum_candidates + candidates[i] > target:
                    break

                # 将当前数字加入到当前组合中,并更新组合的和
                sum_candidates += candidates[i]
                curr.append(candidates[i])
                # 回溯,从当前数字开始继续选择(因为一个数字可以被无限制重复地选择)
                backtrackng(i, curr, sum_candidates)
                # 回溯结束后,撤销上一步的选择
                sum_candidates -= candidates[i]
                curr.pop()

        # 从第一个数字开始回溯
        backtrackng()
        return output

 

40. 组合总和 II

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]

提示:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30

 

class Solution(object):
    def combinationSum2(self, candidates, target):
        """
        :type candidates: List[int]
        :type target: int
        :rtype: List[List[int]]
        time: O(2 ^ N) 最坏的情况下,需要遍历所有可能的子集
        space: O(N)  递归栈的最大深度为N,所以空间复杂度为O(N)
        """

        candidates.sort()  # 排序 为了让后面的代码能更容易地找出重复的数字和执行剪枝
        output = []

        def backtracking(first = 0, curr = [], sum_candidates = 0):
            # 剪枝条件:如果当前和大于目标,返回
            if sum_candidates > target:
                return

            # 如果当前和等于目标,保存这一组合
            if sum_candidates == target:
                output.append(curr[:]) #浅拷贝
                return

            # 遍历candidates数组
            for i in range(first, len(candidates)):
                # 跳过重复元素,以避免重复组合
                if i > first and candidates[i] == candidates[i - 1]:
                    continue
                # 剪枝条件:如果添加当前元素后和大于目标,跳出循环
                if sum_candidates + candidates[i] > target:
                    break

                # 添加当前元素并递归调用自身
                sum_candidates += candidates[i]
                curr.append(candidates[i])
                backtracking(i+1, curr, sum_candidates)
                # 回溯:撤销上一步操作,准备尝试下一个元素
                sum_candidates -= candidates[i]
                curr.pop()

        # 调用回溯函数
        backtracking()
        return list(set(tuple(sublist) for sublist in output))

 

131. 分割回文串

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

回文串 是正着读和反着读都一样的字符串。

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]

示例 2:

输入:s = "a"
输出:[["a"]]

提示:

  • 1 <= s.length <= 16
  • s 仅由小写英文字母组成

通过次数

315.4K

提交次数

429.7K

通过率

class Solution(object):
    def partition(self, s):
        """
        :type s: str
        :rtype: List[List[str]]
        time: O(2^N) , 主要由回溯引起,这里 N 是字符串的长度。
        space: O(2^N), 主要用于存储结果,
        这是因为在最坏的情况下,字符串可以被分割成它的每一个字符,这样的分割方式有 2^N 种
        (每个字符都可以选择拆分或不拆分)。


        """

        output = []

        def backtracking(first = 0, curr = []):
            if first == len(s):
                output.append(curr[:])
                return

            for i in range(first, len(s)):
                if s[first:i+1] == s[first:i+1][::-1]:
                    curr.append(s[first:i+1])
                    backtracking(i+1, curr)
                    curr.pop()

        backtracking()
        return output

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值