39. 组合总和
给你一个 无重复元素 的整数数组
candidates
和一个目标整数target
,找出candidates
中可以使数字和为目标数target
的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates
中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。对于给定的输入,保证和为
target
的不同组合数少于150
个。示例 1:
输入:candidates =[2,3,6,7],
target =7
输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。示例 2:
输入: candidates = [2,3,5],
target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]示例 3:
输入: candidates =[2],
target = 1 输出: []提示:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
candidates
的所有元素 互不相同1 <= target <= 40
class Solution(object):
def combinationSum(self, candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
time: O(2^N)
在最坏情况下,我们可以认为每个数字都有选择和不选择两种情况,因此时间复杂度为
O (2^N),其中 N 是candidates的长度。
space: O(M)
最大的空间开销来自于递归的调用栈和保存结果的空间,递归的最大深度等于 target 的值
除以 candidates 中的最小值,假设为 M,所以空间复杂度为 O(M),
但如果考虑结果的空间,那么空间复杂度为 O(M + 结果的数量 * 平均长度)。
在这种情况下,考虑到结果的数量可能非常大,并且不易准确估算,
我们通常只考虑除结果外的其他部分的空间复杂度,因此空间复杂度为 O(M)。
"""
output = []
def backtrackng(first = 0, curr = [], sum_candidates = 0):
# 终止条件:
# 如果当前组合的和超过目标值,直接返回
if sum_candidates > target:
return
# 如果当前组合的和等于目标值,将当前组合加入到结果集中
if sum_candidates == target:
output.append(curr[:])
return
# 从当前数字开始遍历每个候选数字
for i in range(first, len(candidates)):
# 剪枝
# 如果加上当前数字超过目标值,直接break,因为后面的数字更大,
# 加上后面的数字更不可能满足条件
if sum_candidates + candidates[i] > target:
break
# 将当前数字加入到当前组合中,并更新组合的和
sum_candidates += candidates[i]
curr.append(candidates[i])
# 回溯,从当前数字开始继续选择(因为一个数字可以被无限制重复地选择)
backtrackng(i, curr, sum_candidates)
# 回溯结束后,撤销上一步的选择
sum_candidates -= candidates[i]
curr.pop()
# 从第一个数字开始回溯
backtrackng()
return output
40. 组合总和 II
给定一个候选人编号的集合
candidates
和一个目标数target
,找出candidates
中所有可以使数字和为target
的组合。
candidates
中的每个数字在每个组合中只能使用 一次 。注意:解集不能包含重复的组合。
示例 1:
输入: candidates =[10,1,2,7,6,1,5]
, target =8
, 输出: [ [1,1,6], [1,2,5], [1,7], [2,6] ]示例 2:
输入: candidates = [2,5,2,1,2], target = 5, 输出: [ [1,2,2], [5] ]提示:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
class Solution(object):
def combinationSum2(self, candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
time: O(2 ^ N) 最坏的情况下,需要遍历所有可能的子集
space: O(N) 递归栈的最大深度为N,所以空间复杂度为O(N)
"""
candidates.sort() # 排序 为了让后面的代码能更容易地找出重复的数字和执行剪枝
output = []
def backtracking(first = 0, curr = [], sum_candidates = 0):
# 剪枝条件:如果当前和大于目标,返回
if sum_candidates > target:
return
# 如果当前和等于目标,保存这一组合
if sum_candidates == target:
output.append(curr[:]) #浅拷贝
return
# 遍历candidates数组
for i in range(first, len(candidates)):
# 跳过重复元素,以避免重复组合
if i > first and candidates[i] == candidates[i - 1]:
continue
# 剪枝条件:如果添加当前元素后和大于目标,跳出循环
if sum_candidates + candidates[i] > target:
break
# 添加当前元素并递归调用自身
sum_candidates += candidates[i]
curr.append(candidates[i])
backtracking(i+1, curr, sum_candidates)
# 回溯:撤销上一步操作,准备尝试下一个元素
sum_candidates -= candidates[i]
curr.pop()
# 调用回溯函数
backtracking()
return list(set(tuple(sublist) for sublist in output))
131. 分割回文串
给你一个字符串
s
,请你将s
分割成一些子串,使每个子串都是 回文串 。返回s
所有可能的分割方案。回文串 是正着读和反着读都一样的字符串。
示例 1:
输入:s = "aab" 输出:[["a","a","b"],["aa","b"]]示例 2:
输入:s = "a" 输出:[["a"]]提示:
1 <= s.length <= 16
s
仅由小写英文字母组成通过次数
315.4K
提交次数
429.7K
通过率
class Solution(object):
def partition(self, s):
"""
:type s: str
:rtype: List[List[str]]
time: O(2^N) , 主要由回溯引起,这里 N 是字符串的长度。
space: O(2^N), 主要用于存储结果,
这是因为在最坏的情况下,字符串可以被分割成它的每一个字符,这样的分割方式有 2^N 种
(每个字符都可以选择拆分或不拆分)。
"""
output = []
def backtracking(first = 0, curr = []):
if first == len(s):
output.append(curr[:])
return
for i in range(first, len(s)):
if s[first:i+1] == s[first:i+1][::-1]:
curr.append(s[first:i+1])
backtracking(i+1, curr)
curr.pop()
backtracking()
return output