图论学习之Dijkstra算法的总结

本文总结了Dijkstra算法解决图中最短路径问题的思路和基本模板,包括邻接矩阵和邻接表实现,并探讨了算法的局限性(仅适用于边权为正的情况)。还介绍了如何记录路径、处理多条最短路径及其优化,以及在有向图中找到最短且花费最少的路径的方法。
摘要由CSDN通过智能技术生成

图算法——最短路径——Dijkstra(迪杰斯特拉)算法思路整理及基本模板
这种算法是为了解决最短路径中的一种问题——在一个有向图中,从某一个固定的点出发,然后求到达每个结点的最短的路径的距离。
一开始对于这类问题的思路是可不可以用一个记忆化的搜索进行暴力搜索,然后遍历到当前结点的时候进行更新为最小值。但是似乎如果数据量比较大的时候复杂度有点大。下面就来介绍一下Dijkstra算法
基本思想,就是从最初规定的出发的那个点开始进行传递,然后先假设最初点s到其余所有的点距离为无穷大,然后逐层更新每个点的最短路径。我们以下图为例(红色代表起始结点,黑色数字表示的是结点编号,蓝色数字表示边权):
在这里插入图片描述
我们标注为红色的就是我们的起始点,然后,我们依次开放可以从1直接到达的那些点,我们可以看到,从1可以直接到达2,5,距离分别为5,6。那么我们选取前已知的最短的距离,也就是到2的距离,然后d[2]=5,接下来,我们开放从2可以直接到达的那些点,我们可以知道,从2只可以到达5,则目前已知的距离和还未真正确定的距离就是从1到5这一个点的距离了,我们知道最短为6,那么就令d[5]=6,接着,开放从5可以直接到的那些点的。我们发现就只有4号点(图中忘记标那个点的位置了,就是最左边的那个点),所以,我们接着更新4号结点的d[4],最后同理更新3号结点d[3]。
该算法的基本思路大概就是这样的,想要证明可以去《算法导论》中找,个人觉得,这种算法可以这样理解,就是我最初是更新可以从起始点直接到的那些点的最短距离,然后我开放我已经确定好的最短距离的那些点的去向,然后接着更新,这样下来,我其实就是逐步求到了最优解,然后从局部更新到整体,这样就确保了我最后求下来的就是最短距离了,这个其实和我们的动态规划(DP)的思想是类似的。当然,这只是我自己的一点见解,具体还是建议去看看算法笔记。
复杂度:邻接矩阵的写法O( n 2 n^2 n2),邻接表的写法O( n 2 + E n^2+E n2+E),对于邻接表还有更优的写法就是里面套一个STL中的优先队列进行优化。
局限:只能解决边权为正数的情况,如果边权为负数的话可能会有错误
(输出某个起始点到其余个点的最短路径的长度)邻接矩阵版

#include<iostream>
#include<algorithm>
using namespace std;
const int MAXV=1000;
const int INF=1000000000;

int n,m,s,G[MAXV][MAXV];
bool vis[MAXV]={
   false};
int d[MAXV];

void Dijkstra(int s){
   
	fill(d,d+MAXV,INF);  //初始化最短距离为无穷大 
	d[s]=0;  //初始化自身 
	for(int i=0;i<n;i++){
   
		int u=-1,MIN=INF;
		for(int j=0;j<n;j++) {
   
			if(vis[j]==false&&d[j]<MIN){
   
				u=j;
				MIN=d[j];
			}
		}
		if(u==-1)  return;  //没有找到它可以直接到的最短的距离直接返回,说明这是一个孤立的点 
		vis[u]=true;
		//到了此时,我们就已经知道了u代表的就是我们目前从起始点到达的最短距离的那个结点了 
		for(int v=0;v<n;v++){
   
			//没有更新过,可以从u到达,距离比之前的更短 
			if(vis[v]==false&&G[u][v]!=INF&&d[u]+G[u][v]<d[v]){
   
				d[v]=d[u]+G[u][v];
			}
		}
	}
}

int main(){
   
	int u,v,w;
	scanf("%d%d%d",&n,&m,&s);
	fill(G[0],G[0]+MAXV*MAXV,INF);
	for(int i=0;i<m;i++){
   
		scanf("%d%d%d",&u,&v,&w);
		G[u][v]=w;
	}
	Dijkstra(s);
	for(int i=0;i<n;i++){
   
		printf("%d ",d[i]);
	}
	printf("\n");
	return 0;
}

邻接表版

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

struct Node{
   
	int v,dis;  //v表示的是目标结点,dis表示的是与目标节点的距离 
};
int n,m,s;
const int maxn=1010;
const int INF=1000000000;
int d[maxn],pre[maxn];
bool vis[maxn];
vector<Node> Adj[maxn];

void Dijkstra(int s){
   
	fill(d,d+maxn,INF);
	d[s]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值