[机器学习] 第四章 决策树 1.ID3(信息增益) & C4.5(信息增益率) & Cart(基尼指数)

本文深入介绍了决策树的三种经典算法:ID3(基于信息增益)、C4.5(信息增益率)和Cart(基尼指数)。详细阐述了信息熵、信息增益、信息增益率和基尼指数的概念,并通过实例展示了如何利用这些指标选择最优划分属性。还探讨了ID3和C4.5算法的优缺点以及停止分裂的条件。
摘要由CSDN通过智能技术生成

参考:https://www.cnblogs.com/liuq/p/9927580.html
参考:https

一、ID3 算法

ID3算法 是 以信息增益作为属性的选择标准,构造决策树,是一种贪心算法。

信息熵

我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高。
假设当前样本集合D中第 k 类样本所占比例为 pk(k=1,2,…,|y|) ,y表示样本D中的类别数,则D的信息熵为:

E n t ( D ) = − ∑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值