[机器学习] 信息熵、交叉熵、KL散度、JS散度、Wasserstein距离
最新推荐文章于 2023-11-06 23:58:21 发布
本文详细介绍了信息熵、交叉熵、KL散度、JS散度和Wasserstein距离的概念及其关系。熵是衡量信息量的指标,交叉熵和KL散度常用于评估概率分布之间的差异,其中交叉熵常用于损失函数。JS散度是对称的,而Wasserstein距离则在分布没有重叠时仍能提供有用信息,适用于衡量分布的搬运成本。
摘要由CSDN通过智能技术生成