[机器学习] 第三章 线性模型 1.线性回归 & 逻辑回归 & 线性判别分析LDA

本文详细介绍了线性模型,包括线性回归和逻辑回归。线性回归利用线性组合预测目标,通过最小二乘法或梯度下降求解参数。逻辑回归用于分类,通过对数几率函数(sigmoid)将线性模型转换为概率预测。同时,文章还提及了线性判别分析(LDA)的思想,即通过投影减少分类内的差异并增大类间距离。
摘要由CSDN通过智能技术生成

参考:西瓜书,葫芦书
参考:https://www.cnblogs.com/LittleHann/p/10498579.html#_lab2_0_0
katex:https://www.pianshen.com/article/82691450250/
latex:https://www.cnblogs.com/veagau/articles/11733769.html
参考:https://blog.csdn.net/ruthywei/article/details/83045288

一、线性回归

1. 线性模型

在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion泰勒展开公式),所以理论上线性模型可以模拟物理世界中的绝大多数现象。
而且因为线性模型本质上是均值预测,线性模型参数求解的本质是线性方程组求解;而大部分事物的变化都只(w,b)是围绕着均值(μ)而波动,即大数定理。

1.1 判断线性的标准

是否为线性模型取决于参数是否线性,而非自变量等。
因为在回归问题中,主要重点是参数,而不是自变量或预测变量x。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值