[总结] QA摘要

该博客总结了一个基于汽车问答数据集的模型训练项目。训练集包含82943条记录,测试集有20000条记录。项目采用TensorFlow 2.0实现,包括基线的Seq2Seq模型和两个改进模型:Pointer-Generator Networks (PGN)以及结合Transformer的PGN模型。代码结构清晰,方便理解。
摘要由CSDN通过智能技术生成

数据集:

训练集(82943条记录)建立模型,基于汽车品牌、车系、问题内容与问答对话的文本,输出建议报告文本。

测试集(20000条记录)使用训练好的模型,输出建议报告的结果文件。

代码结构

/QA-master
        ./datasets
        ./seq2seq_tf2                #baseline: 以RNN(cell为LSTM/GRU)为编解码器的Seq2Seq模型。
        ./seq2seq_pgn_tf2        #改进1:     使用了基于Seq2Seq的PGN模型。
        ./seq2seq_transformer_pgn_tf2        #改进2:   使用了transformer作为编解码器的PGN-net。
        ./seq2seq_bertsum        
        ./utils

项目文件说明:

baseline :

seq2seq_pgn_tf2 文件下是使用tensorflow2.0搭建完成的两个模型,一个是baseline版本的seq2seq模型,另外一个是基于seq2seq的Pointer-Generator Networks(PGN)模型。


seq2seq_pgn_tf2文件下是使用tensorflow2.0搭建完成的两个模型,

一个是baseline版本的seq2seq模型,另外一个是基于seq2seq的Pointer-Generator Networks(PGN)模型。
 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值