Python Pandas 高级数据操作 Categorical 数据类型的使用

本文介绍了如何在Python的Pandas库中创建、转换和处理Categorical数据类型,包括处理缺失值、进行操作以及其在内存优化和性能提升方面的优势。还探讨了Categorical列的有序性及其在数据处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、创建 Categorical 数据

pd.Categorical()函数用于将一个列表、数组或类似的序列转换为分类数据(categorical data)。分类数据是一种特殊的数据类型,用于表示具有固定数量可能值的变量,类似于枚举类型。通过将数据转换为 Categorical 类型,可以提高数据处理的效率,尤其是在进行分类分析或处理具有明确类别的数据时。

参数 描述
values 类似列表:分类的值。如果给定了类别,不在类别中的值将被替换为 NaN。
categories 类似索引(唯一),可选:这个分类的唯一类别。如果未给出,类别假定为values的唯一值(如果可能的话按排序,否则按照它们出现的顺序)。
ordered 布尔值,默认为 False:这个分类是否被视为有序分类。如果为 True,则结果分类将是有序的。一个有序的分类在排序时,会尊重其类别属性的顺序(反过来这个类别属性就是提供的类别参数)。
dtype CategoricalDtype:用于这个分类的 CategoricalDtype 实例。从版本 0.21.0 开始新增。

使用示例:

import pandas as pd

# 创建一个简单的列表
data = ['low', 'medium', 'high', &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值