这里利用python实现基于MACD指标的简单均线择时策略,投资标的为沪深300指数。
其核心MACD指标计算部分直接调用talib库实现,整个代码就变得非常简单。
基于baostock实现的数据获取部分函数在之前的文章中已展示过,在这里就省略了。
if __name__ == '__main__' :
# 参数设置
code = "sh.000300"
start_date = "2015-01-01"
end_date = "2018-12-31"
freq = "d"
fields = "date,close"
login_baostock() # 登陆baostock
# 利用baostock获取沪深300指数的日频收盘价序列
rs1 = get_share_info(code, start_date, end_date, fields, frequency=freq)
result_kline = get_share_result(rs1)
price = result_kline['close'].astype(float)
# 用python自带的tseries库中的pct_change()函数计算日收益率
ret = price.pct_change()
# 用talib库中的相应函数计算MACD指标
dif, dea, macd = ta.MACD(price)
# 只考虑MACD指标,MACD转正时开仓买入,转负时清仓
sig = (macd>0)
# sig滞后一期、去除空值、转换成整数
sig_lag = sig.shift(1).fillna(0).astype(int)
# sig_lag与股票日收益率相乘,即可得策略日收益率。python能自动对齐时间序列的日期
sig_ret = sig_lag*ret
# 计算策略累计收益
cum_sig_ret = (1+sig_ret).cumprod()
# 把股票价格转换成从1开始,方便比较
price_norm = price/price[0]
# 不考虑手续费,作图比较该策略和“买入-持有”策略的表现
plt.figure(figsize=(18,8))
plt.plot(price_norm)
plt.plot(cum_sig_ret)
plt.legend(["benchmark", "strategy cumulative return"], loc="upper left")
plt.show()
logout_baostock() # 登出baostock
最终结果:
本篇为DataWhale小组学习笔记,参考了教程中的代码,不同之处在于原代码利用聚宽平台数据,此处则利用baostock实现了数据获取。
以上就是“利用python实现基于MACD指标的均线择时策略”的全部内容,希望对你有所帮助。
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、Python练习题
检查学习结果。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最后祝大家天天进步!!
上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。