证明:二分图中的环只能是偶环,不可能是奇环

二分图定义:是这样一个图,其顶点可分为两集合X和Y,所有的边关联的两顶点中,恰一个属于X,另一个属于Y。同一集合的结点不相邻。

证明:假设二分图中的环是奇数环。

设一个环,x1,x2,x3,,,,x(2*k-1),k>=1且为整数。相邻两点有边连接,x1与x(2*k-1)相连。

由二分图定义可知:x1与x2分别在X集合和Y集合,由于x2与x3的关系可知x3在X集合,则x4在Y集合,以此类推,可得奇数点在X集合,偶数点在Y集合,那么点x(2*k-1)则在X集合中,即与x1同为一个集合,但有之间假设的x1与x(2*k-1)有连边,那么此时就与二分图定义不符,这二分图中的环不可能是奇数环。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值