【牛客】WY49数对,JZ65不用加减乘除做加法

本文介绍了如何利用位运算高效地解决两个编程题目:一是寻找满足特定余数条件的正整数数对,二是不使用四则运算符进行加法操作。对于数对问题,通过分析余数周期性变化,确定了计算方法;对于加法问题,利用位运算中的异或和与运算实现了进位加法。这两个问题展示了位运算在算法设计中的强大能力。
摘要由CSDN通过智能技术生成

在这里插入图片描述博客主页: XIN-XIANG荣
系列专栏:【LeetCode/牛客刷题】
一句短话: 难在坚持,贵在坚持,成在坚持!

一. WY49数对

题目描述:

牛牛以前在老师那里得到了一个正整数数对(x, y), 牛牛忘记他们具体是多少了。

但是牛牛记得老师告诉过他x和y均不大于n, 并且x除以y的余数大于等于k。

牛牛希望你能帮他计算一共有多少个可能的数对。

输入描述:

输入包括两个正整数n,k(1 <= n <= 10^5, 0 <= k <= n - 1)。

输出描述:

对于每个测试用例, 输出一个正整数表示可能的数对数量。

示例1

输入:5 2

输出:7

说明:

满足条件的数对有(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(5,3)

链接: 点这里
来源: 牛客网

解题思路:

先考虑除数y的取值,题目中要求余数余数>=k,所以除数要>k,所以y的取值范围显然属于区间[k+1, n]

要注意观察余数的规律,余数呈现周期性变化当除数为y时,余数从1到y-1,末尾还有一个0,这就是一个周期;而除数从1到n一个周期为一个小区间,可以将从1到n划分为 t=n/y 个小区间

[1, 2, …, y]
[y+1, y+2, …, 2y]
[2
y+1, 2y+2, …, 3y]

[ty+1, ty+2, …, n]

每个周期内满足的被除数是y-k个

最后一个区间如果是不完整周期,需要单独进行计算(因为 0 出现在周期序列的最后一个元素,不完整区间中周期末尾是没有0的);最后一个不完整周期是1 到 n%y,所以 k!=0 时个数是n%y-k+1;当 k=0 时,个数为n%y

代码实现:

import java.util.Scanner;
public class Main {
    public static void main(String args[]) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int k = sc.nextInt();
        long count = 0;
        for(int y = k+1; y <= n; y++) {
            int ret = (n/y) * (y-k);
            if(n%y>=k && k!=0) {
                ret += n%y-k+1;
            }else if(n%y>k && k==0) {
                ret += n%y;
            }
            count += ret;
        }
        System.out.println(count);
    }
}

提交结果:

img

二. JZ65不用加减乘除做加法

题目描述:

写一个函数,求两个整数之和,要求在函数体内不得使用+、-、*、/四则运算符号。

数据范围:两个数都满足 −10≤n≤1000

进阶:空间复杂度 O(1)O(1),时间复杂度 O(1)O(1)

示例1

输入:1,2

返回值:3

示例2

输入:0,0

返回值:0

链接: 点这里
来源: 牛客网

解题思路:

这个题不能使用 +、-、*、/ 四则运算符号,那么跟计算相关的就应该考虑位运算了,要使用位运算完成相加,首先要理解一个计算思想:我们在计算时先不考虑进位实现不进位的运算,然后再实现进位的运算,最后把进位和不进位的结果相加就是最终的计算结果,看下面的例子进行理解。

先以十进制为例:

15+7 , 先计算不考虑进位的相加结果 12 (因为 5+7 的不考虑进位的结果是 2 ,再加上15的十位),然后计算进位 5+7 进位是 10 ,则 10 与 12 再次相加,此时没有需要再进位的 ,结果为22,计算结束。

位运算是基于二进制的,计算的思想不变,不同点在于位运算符的运用:

与十进制相同,先计算不考虑进位的相加结果( 0+0 得 0 , 1+1 进位得 0 , 1+0 得 1 ),使用异或(^)可以实现效果(异或是相同为0相异为1);

然后计算相加的进位结果(同 1 的位置左移一位即可),两数按位与(&)后再左移一位即可达到进位效果。(这两个1相加会进位,高一位会加1,所以让所有能进位的位数保留1再整体左移达到效果)

再将得到的进位和不进位的两个结果循环上述过程,直到不需要再进位,此时也就不需要相加了,就省去了加的过程,计算结束。

计算示例:

5 (0101) + 7 (0111)

不考虑进位的相加结果 0101^0111 -> 0010

相加的进位 0101&0111 -> 0101 因为进位左移得到 1010

1010 + 0010

不考虑进位的相加结果 1010 ^ 0010 -> 1000

相加的进位 1010 & 0010 -> 0010 因为进位左移得到 0100

1000 + 0100

不考虑进位的相加结果 1000 ^ 0100 -> 1100

相加的进位 1000 & 0100 -> 0000 进位为0结束运算

代码实现:

int Add(int num1, int num2 ) {
    int sum = num1;
    int add = num2;//需要累加的的值 
    while(add != 0)
    {
        //不考虑进位两数异或相加
        int tmp = sum ^ add;
        //两数相与得到需要进位的二进制位
        //再左移一位二进制位达到进位效果
        add =  (sum & add) << 1;
        //更新sum的值
        sum = tmp;
        //循环上述过程直至不需要再进位即可
    }
    return sum;
}

提交结果:

img

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韵秋梧桐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值