理论基础
做题顺序:
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
509. 斐波那契数
时间复杂度:O(n)
空间复杂度:O(1)
class Solution {
public int fib(int n) {
if(n < 2) return n;
int sum = 0;
int a = 0;//初始化
int b = 1;
for(int i = 2; i < n+1; i++) {//遍历顺序从前向后
sum = a + b;//递推公式
a = b;
b = sum;
}
return sum;
}
}
时间复杂度:O(n)
空间复杂度:O(n)
class Solution {
public int fib(int n) {
if(n < 2) return n;
int[] dp = new int[n+1];
dp[0] = 0;//初始化
dp[1] = 1;
for(int i = 2; i < n+1; i++) {//遍历顺序从前向后
dp[i] = dp[i-1] + dp[i-2];//递推公式
}
return dp[n];
}
}
70. 爬楼梯
和斐波那契数递推公式相同,遍历从3开始
时间复杂度:O(n)
空间复杂度:O(n)
class Solution {
public int climbStairs(int n) {
if(n < 3) return n;
int[] dp = new int[n+1];
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i < n+1; i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
}
746. 使用最小花费爬楼梯
第一步不用花费。
class Solution {
public int minCostClimbingStairs(int[] cost) {
int[] dp = new int[cost.length + 1];
dp[0] = 0;//初始为0, 向上跳才花费体力值
dp[1] = 0;
for(int i = 2; i < cost.length + 1; i++) {
dp[i] = Math.min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
}
return dp[cost.length];
}
}
class Solution {
public int minCostClimbingStairs(int[] cost) {
int[] dp = new int[cost.length];
dp[0] = cost[0];//初始不为0, 到达位置即花费体力值,最后一步不花费体力
dp[1] = cost[1];
for(int i = 2; i < cost.length; i++) {
dp[i] = Math.min(dp[i-1], dp[i-2]) + cost[i];
}
return Math.min(dp[cost.length - 1], dp[cost.length - 2]);
}
}