2017年A组蓝桥杯(最大公共子串问题)【动态规划】

24 篇文章 1 订阅

最大公共子串长度问题就是:

求两个串的所有子串中能够匹配上的最大长度是多少。

比如:"abcdkkk" 和"baabcdadabc",

可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。

下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。

请分析该解法的思路,并补全划线部分缺失的代码。


题目分析:

    是一道比较经典的dp思想,在矩阵中,行和列分别代表两个串对应位置的字符且矩阵初始化为0,如果该字符相同,则表明目前的最大公共子串长度是之前的a[i-1][j-1]公共子串长度+1。当然前提是这个公共子串是必须相邻的,蓝桥杯这一点没有标注,但是题目只给了一行,也可以猜出来。


#include <stdio.h>
#include <string.h>

#define N 256
int f(const char* s1, const char* s2)
{
	int a[N][N];
	int len1 = strlen(s1);
	int len2 = strlen(s2);
	int i,j;
	
	memset(a,0,sizeof(int)*N*N);
	int max = 0;
	for(i=1; i<=len1; i++){
		for(j=1; j<=len2; j++){
			if(s1[i-1]==s2[j-1]) {
				a[i][j] = a[i-1][j-1]+1;  //填空
				if(a[i][j] > max) max = a[i][j];
			}
		}
	}
	
	return max;
}

int main()
{
	printf("%d\n", f("abcdkkk", "baabcdadabc"));
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值