如下的10个格子
填入0~9的数字。要求:连续的两个数字不能相邻。 (左右、上下、对角都算相邻)
一共有多少种可能的填数方案?
请填写表示方案数目的整数。
填入0~9的数字。要求:连续的两个数字不能相邻。 (左右、上下、对角都算相邻)
一共有多少种可能的填数方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
题目分析:有两种思路,一种是从左上角第一个节点开始,向下面和右面依次遍历,每次填一个数,并且判断是否和四周的数相邻。 还有一种是直接全排列0-9,然后从左到右,从上到下依次填入,之后判断是否满足相邻的格子数不相邻的条件,如果满足则方案数+1.全排列用next_permutation函数即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int map[5][5];
int vis[10];
int vis2[5][5];
int counts ;
int dx[8] = {0,1,0,-1,1,-1,1,-1};
int dy[8] = {1,0,-1,0,1,-1,-1,1};
int judge(int k,int x,int y)
{
for(int i = 0; i < 8; i++)
{
int tx = dx[i] + x;
int ty = dy[i] + y;
if(tx > 3 || tx < 1 || ty > 4 || ty < 1) continue;
if(abs(k - map[tx][ty]) == 1) return false;
}
return true;
}
int ans = 0;
void dfs(int x,int y)
{
if(x == 3 && y == 4)
{
ans++;return ;
}
for(int i =0 ; i <= 9; i++)
{
if( judge(i,x,y) && vis[i] == 0)
{
vis[i] = 1;
map[x][y] = i;
if(y == 4 ) dfs(x+1,1);
else dfs(x,y+1);
vis[i] = 0;
map[x][y] = -2;
}
}
}
int main()
{
memset(vis,0,sizeof(vis));
memset(vis2,0,sizeof(vis2));
for(int i = 0; i <= 4; i++)
for(int j = 0; j <= 4; j++)
map[i][j] = -2;
dfs(1,2);
cout<<ans<<endl;
return 0;
}