【C++】求两个正整数m,n的最大公约数、最小公倍数。

本文介绍了使用C++编程实现辗转相除法求两个正整数的最大公约数(GCD)和最小公倍数(LCM)。通过不断求余数并交换被除数和除数,直至余数为0,此时的除数即为最大公约数。然后利用两数乘积除以最大公约数得到最小公倍数。
摘要由CSDN通过智能技术生成

分析:求两个整数的最大公约数可以采用辗转相除法。以下是辗转相除法的算法:分别用m,n,r表示被除数、除数、余数;
1)求m除以n的余数r;
2)当r != 0, 执行第3)步;若r == 0,则n为最大公约数, 算法结束。
3)将n的值赋给m,将r的值赋给n;再求m除以n的余数r。
4)转到第2)步

#include <iostream>
using namespace std;

int main() {
   
	int m, n, r;
	cin >></
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值