流媒体服务中视频压缩技术的应用和前景探讨

随着5G的发展,视频压缩技术成为实时音视频领域的焦点。TSINGSEE青犀视频从H264到H265的优化,体现了这一趋势。当前研究集中在深度学习和端到端视频压缩框架,如用深度学习改进帧间预测,实现码率减少。在智慧交通等场景中,视频压缩需考虑兴趣区域的清晰度。未来,深度学习将更深入地应用于视频编码、码率分配和带宽估计,提升传输效率和质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在实时音视频领域,视频压缩是非常重要的技术。TSINGSEE青犀视频不断优化系统,从H264到H265的支持,也是在视频压缩上下功夫,增强用户体验。而现在,5G基础设施已经日趋完善和普及,新的视频应用场景不断在拓展,视频压缩技术也在迭代。

为了确保视频流的高质量和高传输效率,新型的视频压缩技术要求我们考虑到存储、编解码、算力和带宽等因素在内的各项因素,还要在画质、码率和性能之间做平衡。

目前在视频压缩的研究方面,主要是基于人工智能的深度学习技术和端到端的视频压缩框架。深度学习技术替换混合编码框架模块,可用于码率分配、块划分以及帧内预测和帧间预测。以帧间预测为例,实验结果表明,与 HEVC 相比,基于深度学习所提出的方法在low delay P 配置下,能达到平均1.7%(最高为8.6%)的码率减少。端到端的视频压缩框架最新研究成果是对现有深度学习视频压缩,只能利用少数的参考帧进行压缩的问题,研究人员提出了重复自编码器和重复概率估计模型。

image.png

这些技术目前都还不稳定,还需进一步开发和研究,但即便如此,依靠该技术依然可以衍生各种功能,同时也拥有着非常广阔的应用前景:

1、采用深度学习网络替换视频压缩的混合编码框架,可以提高编码效率,在 WebRTC 中具有重要的应用价值;
2、深度强化学习网络对码率进行分配,将改善在使用 WebRTC 视频传输中的卡顿现象;
3、基于深度学习的带宽估计模型也将比传统的带宽估计方法更有优势。

WebRTC.png

除此之外,不同的场景人们的关注重点会有所不同。此处我们以智慧交通为例,要对交通监控视频进行高效压缩,就必须根据该场景特点,将背景区域和运动区域细致区分。交警对于违章车辆的关注点是车牌号,车牌号是否清晰,将直接影响执法证据的收集是否有效。因此,在带宽有限的情况下,确保兴趣关注区域的质量是视频压缩技术的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值