训练集和测试集分布差异双坐标图

在建模的时候,有些变量在训练集效果很好,但是在测试集和oot出现了严重衰减。如何识别出这种变量?一种方法是看同样分箱分别在训练集和测试集上IV值,如果差异过大,说明变量分布不稳定。这种方法的优点是容易计算,可以快速筛选出这种类型的变量,缺点是不能看出差异具体分布在哪。为了更清晰地判断两者分布差异,可以通过画双坐标图的形式,直观观察变量分布特征。这种方法在变量精筛的时候常常用到。本文以企业欺诈数据为例,进行代码拆分展示。

  

一、绘图效果

  
绘图效果如下:

在这里插入图片描述

标题Risk_D表示分箱变量名,横轴表示变量分箱区间,左y轴表示柱状图的刻度线,右y轴表示折线图的刻度线。蓝色表示训练集数据,红色表示测试集数据。柱状图表示该箱在整体数据的占比,折线图表示该箱坏样本率。接下来详细介绍该图的生成原理。

  
  

二、加载数据

  

1 加载库

  
首先加载pandas库,并设置数据读取文件夹。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿黎逸阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值