An Imitation Learning Curriculum for Text Editing with Non-Autoregressive Models [pdf]
- 论文状态:被ACL22接收
- 作者:University of Maryland的 Sweta Agrawal 和 Marine Carpuat
- TL;DR: 本文介绍了两种互补的策略来解决NAR模型适应编辑任务时训练不足和泛化问题:roll-in policy和Curriculum Learning
1. Motivation
设计用于训练机器翻译模型的模仿学习算法引入了训练阶段和推理阶段之间的不匹配,导致在text editing任务中的训练不充分和泛化错误。
2. Contribution
- 提升了text editing任务的输出质量和可控性
- 在controllable text simplifification (TS) 和 abstractive summarization任务上应用了非自回归模型
3. Model
传统的非自回归模型一般是会基于输入的文本做编辑,规定2种操作类型:
- reposition:预测单词的位置和是否该删掉
- insertion: 预测掩码位置 和 掩码单词预测
而在训练的时候,是根据ROLL-IN POLICIES来训练的(我是做摘要的,没有看懂什么是ROLL-IN POLICIES,貌似是某种Markov Decision Process)
- 作者修改了ROLL-IN POLICIES,添加了一些噪音。
- 然后为了防止训练不充分,作者用简单的例子先训,再逐步增加复杂度。
4. Experiments
在一个6K数据的短文本摘要数据集(Toutanova et al. (2016))上做了实验。
比较的模型都是20年之前的模型,也没有和BART之类的模型对比。主要是和一个同为Non-Autoregressive Model的FELIX模型对比。
而且也只report了Rouge-L分数。
得出的结论是EDITCL能大幅提升Recall,进而把F1分数提升。
5. Key takeaways
- 不只有Autoregressive方法做生成式摘要,还有Non-Autoregressive Model