题目描述
有一个 n ( n ≤ 2005 ) n(n\le 2005) n(n≤2005) 个数组成的序列,每个数字互不相同,从前到后依次插入一个新序列中,若当前元素比上一个插入的数小则插入到左边,若比上一个大则插入到右边,给定插入后得到的序列,求原始序列的个数。
算法分析
区间 DP 裸题,设 f [ i ] [ j ] [ 0 / 1 ] f[i][j][0/1] f[i][j][0/1] 表示区间 [ i , j ] [i,j] [i,j] 最后一次插入是在左/右端的原始序列个数,设计转移。
代码实现
#include <cstdio>
const int maxn=1005;
const int mod=19650827;
int a[maxn],f[maxn][maxn][2];
inline int inc(int x,int y) {x+=y;return x>=mod?x-mod:x;}
int main() {
int n;scanf("%d",&n);
for(register int i=1;i<=n;++i) scanf("%d",&a[i]);
for(register int i=1;i<=n;++i) f[i][i][0]=1;
for(register int l=2;l<=n;++l) {
for(register int i=1,j=i+l-1;(j=i+l-1)<=n;++i) {
if(a[i]<a[i+1]) f[i][j][0]=inc(f[i][j][0],f[i+1][j][0]);
if(a[i]<a[j]) f[i][j][0]=inc(f[i][j][0],f[i+1][j][1]);
if(a[j]>a[i]) f[i][j][1]=inc(f[i][j][1],f[i][j-1][0]);
if(a[j]>a[j-1]) f[i][j][1]=inc(f[i][j][1],f[i][j-1][1]);
}
}
printf("%d\n",(f[1][n][0]+f[1][n][1])%mod);
return 0;
}