【BZOJ 3687】简单题

题目描述

小呆开始研究集合论了,他提出了关于一个数集四个问题:
1.子集的异或和的算术和。
2.子集的异或和的异或和。
3.子集的算术和的算术和。
4.子集的算术和的异或和。
目前为止,小呆已经解决了前三个问题,还剩下最后一个问题还没有解决,他决定把这个问题交给你,未来的集训队队员来实现。
a i &gt; 0 a_i\gt 0 ai>0 1 &lt; n &lt; 1000 1\lt n\lt 1000 1<n<1000 ∑ a i ≤ 2000000 \sum a_i\le 2000000 ai2000000,另外,不保证集合中的数满足互异性,即有可能出现 a i = a j a_i=a_j ai=aj i i i 不等于 j j j

算法分析

观察到和最大是 2000000 2000000 2000000,考虑对于每个和计算它对答案的贡献,如果它被累加进答案的次数为奇数个那么就对答案有贡献,否则由于异或的性质抵消,同样是枚举每个数选或不选的 0/1 背包模型,由于我们只记录奇偶性,可以使用 bitset 压缩,同时用异或运算替代加法对 2 2 2 取模的运算。

代码实现

#include <cstdio>
#include <bitset>
std::bitset<(int)2e6+5> f;
int main() {
	int n;scanf("%d",&n);f[0]=1;
	for(int i=1;i<=n;++i) {
		int a;scanf("%d",&a);
		f^=f<<a;
	}
	int ans=0;
	for(int i=1;i<=(int)2e6;++i) if(f[i]) ans^=i;
	printf("%d\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值