动态规划-零钱兑换

322. 零钱兑换


给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。
如果没有任何一种硬币组合能组成总金额,返回 -1。
示例 1:
输入: coins = [1, 2, 5], amount = 11
输出: 3
解释: 11 = 5 + 5 + 1
示例 2:
输入: coins = [2], amount = 3
输出: -1
说明:
你可以认为每种硬币的数量是无限的。

 


from typing import List
class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [-1 for _ in range(amount+1)]
        dp[0]=0
        for i in range(len(coins)):
            if coins[i]<amount+1:
                dp[coins[i]] = 1

        for i in range(1,amount+1):
            temp = []
            for v in coins:
                if i-v>=0 and dp[i-v]!=-1:
                    temp.append(dp[i-v]+1)
            dp[i] = min(temp) if temp!=[] else -1
        return dp[amount]


if __name__ == "__main__":
    s= Solution()
    coins = [1, 2, 5]
    amount = 11
    # coins = [2]
    # amount = 3

    r= s.coinChange(coins, amount)
    print(r)

零钱兑换II​​​​​​​


给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。 

示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
输入: amount = 10, coins = [10]
输出: 1
 

from typing import List
class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0 for _ in range(amount+1)]
        dp[0] = 1

        for value in coins:
            for i in range(amount+1):
                if i-value>=0:
                    dp[i] +=dp[i-value]
        return dp[amount]

 

### C++ 动态规划 实现 零钱兑换 算法 示例 代码 为了实现零钱兑换问题,采用动态规划方法是一种有效的方式。通过构建一个大小为 `amount + 1` 的数组 `dp` 来存储每一个子问题的结果,其中 `dp[i]` 表示凑齐金额 `i` 所需的最小硬币数量。 初始化时设置 `dp[0] = 0`,因为要凑成金额 0 不需要任何硬币。对于其他位置,则先设为无穷大(这里可以用一个非常大的数值代替),表示尚未找到可行方案。 接着遍历所有可能使用的硬币种类,在每次迭代过程中更新当前考虑的最大金额范围内的各个目标值对应的最少硬币数目: ```cpp class Solution { public: int coinChange(vector<int>& coins, int amount) { vector<int> dp(amount + 1, INT_MAX); dp[0] = 0; for (auto& coin : coins) { // 遍历物品(硬币) for (int j = coin; j <= amount; ++j) { // 更新可达的目标金额 if (dp[j - coin] != INT_MAX && dp[j - coin] + 1 < dp[j]) { dp[j] = dp[j - coin] + 1; } } } return dp[amount] == INT_MAX ? -1 : dp[amount]; } }; ``` 上述代码实现了基于动态规划思想来解决问题的核心逻辑[^2]。此版本不仅能够处理基本案例,还适用于更广泛的输入情况,包括但不限于不同的硬币集合和较大的总额度请求。 #### 关键点解释 - **状态定义**:`dp[i]` 定义为构成金额 `i` 所需的最少硬币数。 - **边界条件**:当所需金额为 0 (`dp[0]`) 时不消耗任何硬币。 - **状态转移方程**:对于每个新加入的硬币面额 `coin` 和其后的每一笔交易金额 `j >= coin` ,尝试用这枚新的硬币去减少之前已经计算好的较小金额下的最佳解 `dp[j - coin]` 加上这一次额外增加的一枚硬币(`+1`)作为候选答案,并取两者之间的较小者作为最终结果保存回原表项中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值