最大似然函数(Maximum Likelihood Function)最大化的是数据在给定参数下出现的概率。具体来说,它最大化的是似然函数(Likelihood Function),即给定参数 θ \theta θ下观测数据的概率。在统计学中,似然函数 L ( θ ) L(\theta) L(θ) 通常定义为所有独立观测数据点概率的乘积,对于参数 ( \theta ) 的函数。
对于一组独立同分布的观测数据 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,…,xn,似然函数可以表示为:
L ( θ ) = ∏ i = 1 n f ( x i ; θ ) L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) L(θ)=i=1∏nf(xi;θ)
其中, f ( x i ; θ ) f(x_i; \theta) f(xi;θ) 是第 i i i个观测数据在参数 θ \theta θ下的概率密度函数(对于连续随机变量)或概率质量函数(对于离散随机变量)。
最大似然估计(Maximum Likelihood Estimation, MLE)的目标是找到一组参数 θ \theta θ,使得观测到的数据集的概率最大,即:
θ ^ = arg max θ L ( θ ) \hat{\theta} = \arg\max_\theta L(\theta) θ^=argθmaxL(θ)
在实际操作中,为了简化计算和避免数值上的不稳定性,通常会最大化似然函数的对数,即对数似然函数(Log-Likelihood Function):
log L ( θ ) = ∑ i = 1 n log f ( x i ; θ ) \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta) logL(θ)=i=1∑nlogf(xi;θ)
最大化对数似然函数等价于最大化似然函数本身,因为对数函数是单调递增的。找到最大化对数似然函数的参数 θ \theta θ 就是最大似然估计的结果。这个过程可以帮助我们估计模型参数,使得模型最好地解释观测到的数据。
在统计学和机器学习中,似然(Likelihood)是一个关于数据的概念,它衡量了在给定模型参数的情况下,观测到当前数据的概率。似然函数是统计模型中非常重要的一个概念,它包含了所有与数据相关的信息,原因如下:
-
数据的反映:似然函数直接依赖于观测数据。它是一个关于参数的函数,但是其值是由数据决定的。在给定数据的情况下,似然函数告诉我们不同参数值的合理性。
-
参数估计的依据:似然函数用于参数估计,特别是在最大似然估计(MLE)中。通过找到使似然函数最大化的参数值,我们可以得到模型的最佳参数估计。这意味着参数的选择完全基于数据。
-
模型的拟合:似然函数衡量了模型对数据的拟合程度。一个高的似然值表示模型在给定参数下能够很好地解释数据,而一个低的似然值则表示模型拟合得不好。
-
信息的完整性:在某些情况下,似然函数包含了数据中的所有信息。例如,在正态分布的情况下,样本的均值和方差可以从似然函数中完全恢复,这意味着似然函数包含了样本中的所有信息。
-
模型选择的依据:似然函数也用于模型选择。不同的模型可以通过比较它们的似然值来进行比较,这被称为似然比检验。这有助于我们选择最能解释数据的模型。
-
概率解释:似然函数提供了一种概率解释,即在给定参数的情况下,观测数据发生的概率。这种解释是统计推断的基础。
-
数据的充分统计量:在某些情况下,似然函数可以被简化为只依赖于数据的充分统计量,这意味着似然函数包含了数据中所有与参数估计相关的信息。
总之,似然是关于数据的,因为它直接依赖于观测数据,并且通过最大化似然函数,我们可以找到最佳参数估计,从而最好地解释数据。似然函数包含了所有与数据相关的信息,因为它是评估模型参数对数据拟合程度的直接度量。