Maximum likelihood function maximizes what thing?

在这里插入图片描述

最大似然函数(Maximum Likelihood Function)最大化的是数据在给定参数下出现的概率。具体来说,它最大化的是似然函数(Likelihood Function),即给定参数 ( \theta ) 下观测数据的概率。在统计学中,似然函数 ( L(\theta) ) 通常定义为所有独立观测数据点概率的乘积,对于参数 ( \theta ) 的函数。

对于一组独立同分布的观测数据 ( x_1, x_2, \ldots, x_n ),似然函数可以表示为:

[ L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) ]

其中,( f(x_i; \theta) ) 是第 ( i ) 个观测数据在参数 ( \theta ) 下的概率密度函数(对于连续随机变量)或概率质量函数(对于离散随机变量)。

最大似然估计(Maximum Likelihood Estimation, MLE)的目标是找到一组参数 ( \theta ),使得观测到的数据集的概率最大,即:

[ \hat{\theta} = \arg\max_\theta L(\theta) ]

在实际操作中,为了简化计算和避免数值上的不稳定性,通常会最大化似然函数的对数,即对数似然函数(Log-Likelihood Function):

[ \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta) ]

最大化对数似然函数等价于最大化似然函数本身,因为对数函数是单调递增的。找到最大化对数似然函数的参数 ( \theta ) 就是最大似然估计的结果。这个过程可以帮助我们估计模型参数,使得模型最好地解释观测到的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZeroSnow1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值