【ACM】最小生成树(Prim算法)

算法分析:
prim算法适合稠密图,时间复杂度为O(n^2),时间复杂度与边的条数无关。
概念:
边带有权值的图称为带权图或者网,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。
1.最小生成树(MST):权值最小的生成树。
2.构造最小生成树应该满足一下两个性质:
尽可能的选取权值小的边,但是不能构成回路。
选取n-1条恰当的边连通n个顶点。

MST性质:
假设G=(V,E)是一个连通网,U是顶点V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。(U是待完成的最小生成树的点的集合)

基本思路:
假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法的开始状态是U={u0}(u0∈V),TE={}。重复执行以下的操作:
在所有的u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)加入集合TE中,同时v0放入U中,直到V=U为止。

模板代码:

#include <cstring>
#include <cstdio>
#include <algorithm>
#define maxn 1005

using namespace std;
const int INF = 0x3f3f3f3f;

int sum;
int _cout;
int e[maxn][maxn];
bool vis[maxn]; //记录每一个结点是否已经在最小生成树中,如果已经被放入,则为true
int dis[maxn];  //保存临时距离的数组
int min_w;

int main()
{
    int n,m; //n表示结点的数量,m表示给出的信息量;
    int t1,t2,t3; //设置3个临时变量
    int node; //保存临时结点

    while(scanf("%d %d",&n,&m) == 2)
    {
        //数组初始化
        memset(vis,false,sizeof(vis));

         sum = 0;
         _cout = 0;
         //初始化邻接矩阵,对角线上的元素表示点自身,所以初始化为0,其他的初始化为一个极大值
        for(int i=1;i<=n;i++)
        {
             for(int j=1;j<=n;j++)
             {
                   if(i == j)
                        e[i][j] = 0;
                    else
                       e[i][j] = INF;
             }
        } 
        //读取数据
        for(int i=1;i<=m;i++)
        {
             scanf("%d %d %d",&t1,&t2,&t3);
             //无向图对称化处理
             e[t1][t2] = t3;
             e[t2][t1] = t3;
        }

        for(int i=1;i<=n;i++)
        {
              dis[i] = e[1][i]; 
              //先把1结点放进最小生成树,dis数组记录了从1结点到其他结点的权值
        }
        vis[1] = true;
        //下面开始构建最小生成树
        for(int i=2;i<=n;i++)  //第一个结点已经放入最小生成树,因此遍历起始点从2开始
        {
             min_w = INF;     //把最小权重表示为一个最大值,因为在下面的比较中会存在权重为INF的边
             for(int j=1;j<=n;j++)
             {
                      if(dis[j] < min_w && !vis[j])
                      {
                             min_w = dis[j];   //遍历找到最小权值边
                             node = j; //保存并更新具有最小权值的结点
                      }
             }
             vis[node] = true;

             sum += min_w;
             for(int j=1;j<=n;j++)
             {
              /*每次插入一个点都要进行更新dis数组的值,
              dis数组保存的是当前最小生成树的所有结点中到结点j的最小权值
              */
                  if(!vis[j] && dis[j] > e[node][j])
                      dis[j] = e[node][j];
             }
        }
        printf("%d\n",sum);

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值