问题描述
只有一堆n个物品,两个人轮流从中取物,规定每次至少取一个,至多取m个,最后取光者获胜。
过程推导
显然,若是n=m+1,那么因为一次最多只能取m个,所以,无论先取者拿走几许个,后取者都可以或许一次拿走残剩的物品,后者取胜。是以我们发了然如何取胜的法例:若是
n=(m+1)r+s,(r为随便率性天然数,s≤m),那么先取者要拿走s个物品,若是后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,成果剩下(m+1)(r-1)个,今后对峙如许的取法,那么先取者必然获胜。总之,要对峙给敌手留下(m+1)的倍数,就能最后获胜。