分布式文件系统HDFS

1.HDFS简介

1.1 Hadoop Distributed File System,简称HDFS。解决海量数据的分布式存储。

1.2 分布式文件系统

  • 计算机集群中内部机器通过光纤高速交换机进行连接,机架之间通过宽带更高的光纤交换机连接。

  • 有一个主节点机器其他的为从节点机器,主节点承担数据目录(元数据)服务,从节点负责具体的数据存储任务。
    在这里插入图片描述
    在这里插入图片描述
    1.3 HDFS实现目标

  • 兼容廉价的硬件设备

  • 实现流数据读写:批量读取全部数据或大部分数据。

  • 支持大数据集

  • 支持简单的文件模型

  • 强大的跨平台特性

1.4 HDFS自身的局限性

  • 不适合低延迟数据访问
  • 无法高效存储大量小文件:HDFS是通过元数据来指引客户端到节点寻找相关数据文件,一个文件被切分存到不同节点。元数据被保存在NameNode节点,HDFS会建立一个碎银数据结构,小文件多,则索引数据结果变得复杂,查询效率变低。
  • 不支持多用户写入及任意修改文件:只允许追加,不允许修改。

2.HDFS相关概念

2.1 块的概念:HDFS中核心概念,分摊磁盘的读写开销(在大量数据间分摊磁盘寻址开销),比普通的文件系统块要大得多,默认为64M。如果块过大,MapReduce执行任务的并行度降低。

2.2 HDFS块设计的优点

  • 支持大规模文件存储:对较大数据进行分割,使其可以分布存储在某些节点(不分的话,单机存不下)。
  • 简化系统设计
  • 适合数据备份

2.3 HDFS两大组件

  • 名称节点:整个HDFS集群的管家,有数据目录。
    元数据:包括数据分割的份数,块与文件的映射关系、块的存储位置等信息。
    FsImage:保存系统文件树以及文件树中所有文件和文件夹中的元数据。是存储相关元数据的,包括文件的复制等级、修改访问时间、访问权限、块大小以及组成的文件的块。
    在这里插入图片描述
    EditLog:记录对数据进行的诸如创建、删除、重命名等操作。

  • 数据节点:存储实际数据。

  • 从节点向主节点汇报自己存储的数据块,主节点生成一个数据清单。

  • 如何避免EditLog的不断增大
    SecondaryNode:名称节点的冷备份,也负责对EditLog的维护处理,定期与主节点通信,在某个阶段会请求名称节点停止使用EditLog文件,名称节点停止使用EditLog而生成一个新的edits.new,将又生成的EditLog文件更新写到edits.new中去,第二名称节点通过Http Get方式从名称节点上把FsImage和旧的EditLog下载到本地,然后合并得到新的FsImage文件,然后发送个名称节点,然后名称节点把edits.new更改为EditLog。
    在这里插入图片描述

3.HDFS体系结构

3.1 数据访问
在这里插入图片描述

3.2 HDFS 命名空间
在这里插入图片描述
3.3 使用的通信协议
在这里插入图片描述

3.4 HDFS局限性

  • 命名空间限制:名称结点是保存在内存中的,因此名称结点能够容纳的对象的个数会受到空间大小的限制。
  • 性能瓶颈:整个分布式文件的吞吐量,受限于单个名称结点的吐吞量。
  • 隔离问题:由于集群中只有一个名称结点,只有一个命名空间,因此无法对不同应用程序进行隔离。
  • 具有单点故障:第二名称结点是冷备份,后来2.0版本有所改进。

4.HDFS存储原理

  • 数据冗余保存:每个块都被冗余保存(默认3份).

    • 优点:加速数据传输速度。多机器访问一个数据时。

    • 很容易检查数据错误。

    • 保证数据可靠性。自动复制生成新的副本,保证正确的副本数量。

    • 存储策略:一个块,生成副本,第一个副本存储在上传数据的结点。外部结点若向集群写入数据,则一个块的副本,集群会随机挑选一个磁盘不太满,CPU不太忙的结点存储块的第一个副本,第二副本放在和第一个机架不同的结点上,第三个副本放在和第一个副本相同的机架的不同结点上。
      在这里插入图片描述

    • 读取策略:HDFS提供的一个API可以确定一个数据结点所属的机架ID。获取数据:根据客户端的机架ID和数据副本的机架ID,选择最近的数据副本读取数据。否则的话,就随机选择结点。

  • 数据的错误与恢复

    • 名称结点出错:热备份,则直接启动第二名称结点。
      在这里插入图片描述
    • DateNode出错:通过该节点的数据的其他副本复制该节点的所有数据,放到其他结点。
      在这里插入图片描述
    • 数据本身出错:校验码,数据创建时生成校验码,并和数据放在同一目录下。读到数据时,计算其校验码与源校验码对比,看是否出错。
      在这里插入图片描述

5.HDFS编程-数据读写

  • Hadoop中的一个通用文件系统的抽象基类FileSystem,如下继承其的子类。

    • DistributedFileSystem
    • 数据的读写open/read/close
      • FSDateInputStream
      • DFSInputStream
        在这里插入图片描述
  • hadoop.conf.Configuration

    • Configuration conf=new Configuration();会通过构造函数加载hdfs-site.xml和core-site.xml文件,获取相关配置信息。
  • 数据读取流程
    在这里插入图片描述

6.HDFS编程实践

  • hadoop fs +:

    • ls :显示文件详细信息
    • mkdir:创建相关文件夹
    • cat:指定文件内容输出到标准输出。
  • 本地文件复制到HDFS系统

    • hadoop fs -cp 本地目录 HDFS路径
  • 利用Java API与HDFS交互:需要加载hadoop开发的jar包,一般位于/usr/local/hadoop/share/hadoop目录下,需要将其导入编辑器Eclipse中。选择属性—>Java Build Path—>Libraries—>Add External JARS。

  • 需要将配置的两个文件core-site.xml和hdfs-site.xml复制到Java工程目录下的bin目录下,否则后面运行会出错。

  • 基本编程结构:测试某文件是否存在。

import org.apache.hadoop.conf.Configuration;//管理相关配置文件
import org.apache.hadoop.fs.FileSystem;		//文件相关的基类
import org.apache.hadoop.fs.Path;			//路径类

public class Chap
{
	try
	{
		String filename="hdfs://localhost:9000/user/hadoop/test.txt";
		Configuration conf =new Configuration();
		FileSystem fs=FileSystem.get(conf);
		if(fs.exists(new Path(filename)))
		{
			System.out.println("文件存在");
		}
		else
		{
			System.out.println("文件不存在");
		}
	}catch(Exception e)
	{
		e.printStackTrace();
	}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秘境之眼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值