【文献阅读】基于机器学习算法的建筑能耗监测数据异常识别及修复方法

本文介绍了基于机器学习的建筑能耗监测数据异常识别方法,利用K-means聚类进行异常检测,然后使用KNN算法进行数据修复。在识别噪声点时,若数据与监测值差异超过60%则标记为噪声,并通过迭代优化提高识别精度和修复准确性。
摘要由CSDN通过智能技术生成

1.数据异常识别:K-means聚类

 

2.修复方法:KNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值