【文献阅读】数据挖掘技术在建筑暖通空调领域的研究应用进展

本文探讨了数据挖掘在建筑暖通空调领域的应用,包括能耗分析、故障检测与诊断、优化运行与控制。数据预处理是关键,涉及K-Means、KNN和小波分析等算法。通过决策树模型分析用户行为,预测技术如线性回归、神经网络和SVM用于能耗预测。异常检测结合专业知识和数据挖掘方法,故障诊断则发展至多算法融合。优化运行中,数据挖掘算法如拉格朗日法、遗传算法和神经网络用于控制策略优化,模型预测控制结合人工神经网络和模糊算法实现控制优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

  

数据预处理占到整个数据挖掘流程的 80% 以上的工作量,是最重要的工作之一

 

如对于异常数据,常见的算法有 K-Means 算法、KNN 算法 以及小波分析算法,K-Means 算法在处理过程 中易受异常值的影响,KNN 算法对计算性能要求较高,不适合于处理过大的数据集合,而小波算法本身过于复杂,实施过程中耗费的时间较长、效率较低,

 

能耗

建筑能耗影响因素分析与量化研究

建筑能耗的影响因素归为以下几个 主要因素: 气候条件( 如温度、湿度、太阳辐射等) 、 建筑特性( 如围护结构特性) 、建筑用能系统与设备 ( 如暖通空调系统) 、用户行为与活动、室内空气品 质等

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值