分治法的基本思想
分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。
将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治法所能解决的问题一般具有以下几个特征:该问题的规模缩小到一定的程度就可以容易地解决;
1.该问题可以分解为若干个规模较小的相同问题
2.利用该问题分解出的子问题的解可以合并为该问题的解;
3.该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
4.这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。
Divide_and_Conquer(P){
if (|P|<=n0 ) return adhoc(P);
divide P into smaller substances P1,P2,…,Pk;
for (i=1; i<=k; k++)
yi=Divide-and-Conquer(Pi) //递归解决Pi
Return merge(y1,y2,…,yk) //合并子问题
}