利用CNN实现手写体识别

用TensorFlow实现CNN代码1

 
 
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
#!/usr/bin/env python
# -*- coding:utf-8 -*-

__author__ = 'houlisha'


import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 产生随机变量,符合 normal 分布
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

# 产生常量矩阵
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 定义2维的convolutional图层
# strides:每跨多少步抽取信息,strides[1, x_movement,y_movement, 1], [0]和strides[3]必须为1
# padding:边距处理,“SAME”表示输出图层和输入图层大小保持不变,设置为“VALID”时表示舍弃多余边距(丢失信息)
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# 定义pooling图层
# pooling:解决跨步大时可能丢失一些信息的问题,max-pooling就是在前图层上依次不重合采样2*2的窗口最大值
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1])                   # 将原图reshape为4维,-1表示数据个数,28*28=784,1表示颜色通道数目
y_ = tf.placeholder(tf.float32, [None, 10])

### 1. 第一层网络
# 把x_image的厚度由1增加到32,长宽由28*28缩小为14*14
W_conv1 = weight_variable([5, 5, 1, 32])                    # 按照[5,5,输入通道=1,输出通道=32]生成一组随机变量
b_conv1 = bias_variable([32])                               
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)    # 输出size 28*28*32(因为conv2d()中x和y步长都为1,边距保持不变)
h_pool1 = max_pool_2x2(h_conv1)                             # 输出size 14*14*32

### 2. 第二层网络
# 把h_pool1的厚度由32增加到64,长宽由14*14缩小为7*7
W_conv2 = weight_variable([5, 5, 32, 64]) 
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

### 3. 第一层全连接
# 把h_pool2由7*7*64,变成1024*1
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])               # 把pooling后的结构reshape为一维向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)                   # 按照keep_prob的概率扔掉一些,为了减少过拟合 

### 4. 第二层全连接
使用softmax计算概率进行分类, 最后一层网络,1024 -> 10, 
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

sess = tf.Session()
sess.run(tf.initialize_all_variables())
for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i % 100 == 0:
        train_accuracy = accuracy.eval(session = sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
        print 'step %d, training accuracy %g' % (i, train_accuracy)
    sess.run(train_step, feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5})

print 'test accuracy %g' % accuracy.eval(session = sess, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})


tf.nn.conv2d到底做了啥?

参考:http://stackoverflow.com/questions/34619177/what-does-tf-nn-conv2d-do-in-tensorflow

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

  • input: A Tensor. type必须是以下几种类型之一: half, float32, float64.
  • filter: A Tensor. type和input必须相同
  • strides: A list of ints.一维,长度4, 在input上切片采样时,每个方向上的滑窗步长,必须和format指定的维度同阶
  • padding: A string from: “SAME”, “VALID”. padding 算法的类型
  • use_cudnn_on_gpu: An optional bool. Defaults to True.
  • data_format: An optional string from: “NHWC”, “NCHW”, 默认为”NHWC”。 
    指定输入输出数据格式,默认格式为”NHWC”, 数据按这样的顺序存储: 
    [batch, in_height, in_width, in_channels] 
    也可以用这种方式:”NCHW”, 数据按这样的顺序存储: 
    [batch, in_channels, in_height, in_width]
  • name: 操作名,可选.

conv2d实际上执行了以下操作:

  1. Flattens the filter to a 2-D matrix with shape 
    [filter_height * filter_width * in_channels, output_channels]
  2. Extracts image patches from the the input tensor to form a virtual tensor of shape 
    [batch, out_height, out_width, filter_height * filter_width * in_channels]
  3. For each patch, right-multiplies the filter matrix and the image patch vector.
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值