DataWhale_星火杯大模型应用创新赛_Task2打卡_学习笔记

        与其说是学习笔记,不如说是AI对于队伍里小伙伴们的idea的总结。

方案一:做题助手

一、核心需求

1. 分步骤引导解题思路

        区别于直接给出答案,模型需模拟教师引导过程,通过拆解题目难点、提示关键步骤,帮助学生理解思考逻辑(例如“先讲思路,再分步解答”)。

2. 多解法对比与优化​

        针对数学题提供多种解题方法(如常规解法与高数技巧),并分析不同方法的适用场景,帮助学生拓展思维。

​3. 交互式提问与动态反馈

        根据学生理解程度动态调整讲解深度,例如针对“卡壳”步骤提供额外提示,或允许学生追问细节(如“某一步如何推导”)。

4. 学段适配与知识边界限制

        区分初中、高中知识点,避免使用超纲方法(如高中题禁用大学数学技巧),确保答案符合教学要求。


二、可行性

​1. 技术基础

        现有大模型(如讯飞星火、九章MathGPT)已具备数学解题和步骤拆解能力,部分模型正确率超过80%,且支持公式识别与图文混合输入。

​2. 数据需求

        需构建学科专用数据集,包含题目-解法对、常见错误类型及对应引导话术,可通过标注公开题库(如中高考真题)和人工校验补充实现。

3. 提示词工程

        通过设计结构化提示模板,约束模型输出格式,降低答案机械性。

​4. 难点与风险

        需解决复杂题目推理链断裂问题(如几何证明逻辑跳跃),且需防范模型“幻觉”导致的错误。


三、价值评估

1. ​学习效率提升

        通过即时反馈和错题归因(如“易错题助手”),帮助学生针对性巩固薄弱点,减少无效刷题。

​2. 教学辅助价值

        为教师提供命题参考(如生成相似题)、学情分析(如高频错误统计),减轻备课负担。

3. 技术壁垒

        差异化体现在引导策略的动态性(如根据学生水平调整提示深度),而不仅是答案正确率。

4. 潜在问题

        过度依赖可能导致学生思维惰性,需设计“启发度”调节功能(如隐藏关键步骤强制思考)。


四、创新性

1. 动态引导机制

        结合检索增强生成(RAG)技术,从知识库提取关联知识点例题,实现“解题-拓展”联动(如题库关联策略)。

​2. 多模态交互

        支持题目拍照识别、手写公式解析(如OCR功能),并探索图解生成能力。

​3. 认知状态建模

        通过历史答题数据推测学生知识掌握度,动态规划学习路径(如个性化推荐系统)。

4. 轻量化部署

        针对教育场景优化模型参数,适配低算力终端,区别于通用大模型的臃肿架构。


五、小结

        该方案通过​引导式解题​和​交互设计​填补了现有搜题工具的空白,技术可行性较高(已有星火、九章等垂类模型验证),但需重点突破​步骤逻辑连贯性​与​学段适配精准度​。未来可探索与教育硬件(如学习机)深度融合,形成“诊断-讲解-练习”闭环。


方案二:旅游助手

一、核心需求

​1. 动态路线规划与实时调整

  • 根据用户偏好(如紧凑行程、晚起需求)和实时交通数据(如拥堵、景区人流),生成最优路线,避免“往返跑”等不合理规划。
  • 支持多维度路线选择(最短时间、最少换乘、避开高峰),并结合实时天气调整行程。

2.  ​多模态交互与地图可视化

  • 集成地图API(如百度、高德)实现路线可视化,支持点击查看景点详情、拖拽调整顺序。
  • 结合AR导航技术,通过摄像头实时叠加路线指引(如增强现实辅助导航)。

3. ​个性化定制与数据整合

  • 整合用户输入的已知景点、美食偏好、预算限制,结合携程/飞猪等平台的酒店、门票数据生成方案。
  • 支持“渐进式规划”,允许用户中途修改需求并动态调整后续行程。

​4. 酒店与交通智能推荐

  • 基于历史行为分析推荐符合用户消费习惯的酒店(如亲子型、情侣型),并自动比价。
  • 智能匹配公共交通与打车方案,提供实时公交到站时间、租车服务。

二、可行性

1. ​技术基础

  • 现有大模型(如携程TripGenie、视旅VtripGPT)已具备行程规划能力,正确率超75%。
  • 地图API(百度/高德)支持路线规划、POI信息获取,且交互式地图开发框架成熟(如WebGL、Three.js)。

2. ​数据来源

  • 公开数据:景区开放时间、门票价格等可通过政府文旅平台获取。
  • 商业合作:携程/美团等平台提供酒店、交通实时数据接口。

3. ​实现路径

  • Agent架构​:拆分任务为“需求理解→数据检索→路线生成→地图渲染”模块,调用工具链(如搜索API、数据库)协作。
  • 低成本验证​:优先开发单城市MVP(如杭州),再扩展至跨省游。

​4. 风险与挑战

  • 实时数据更新延迟可能导致推荐偏差(如临时闭馆未同步)。
  • 酒店动态价格和房态需高频刷新,可能增加接口调用成本。

三、价值评估

1. 用户体验提升

  • 减少80%的攻略制作时间,通过地图交互直观避免路线错误。
  • 动态优化功能可提升行程满意度30%。

2. ​商业价值

  • 通过酒店/门票导流分成、广告位投放实现盈利(参考携程“口碑榜”模式)。
  • 积累用户行为数据后,可拓展至旅游保险、租车等衍生服务。

3. ​社会效益

  • 分流热门景区压力,通过冷门景点推荐促进区域旅游均衡发展。
  • 降低自由行门槛,助力银发族、学生群体自主出游。

​4. 潜在问题

  • 过度依赖AI可能导致用户丧失自主探索乐趣,需设计“半自助模式”(如推荐3个备选方案供用户选择)。

四、创新性

​1. 交互模式创新

  • 地图-文本双向联动​:点击地图景点自动跳转至详情页,修改文本行程实时同步地图标记。
  • 多终端协同​:手机端查看路线,平板端显示景点AR导览(参考VR/AR技术整合)。

2. ​算法优化

  • 时空约束模型​:将用户作息(如“早上9点后出发”)、景点开放时间纳入路线规划算法。
  • 社交数据融合​:爬取小红书/抖音网红打卡点热度,动态更新推荐权重。

3.​功能差异化

  • 行李规划助手​:根据行程天数、目的地气候推荐必备物品,并对接电商平台一键购买。
  • 旅行剧本生成​:提供“文化探索”“美食打卡”等主题剧本,自动匹配景点与餐饮。

4. ​技术整合创新

  • 多Agent协作​:行程规划Agent调用地图Agent、酒店比价Agent并行处理,缩短响应时间。
  • 离线模式​:通过本地缓存实现无网络环境下基础功能可用(如已下载景区的地图导航)。

五、小结

        该方案通过​动态路线规划​和​多模态交互​解决现有AI攻略的机械性问题,技术上依赖成熟API与Agent架构降低开发难度,商业上具备清晰的导流变现路径。创新点集中于​时空约束算法​与​地图-文本双向交互​,差异化竞争力显著。下一步需优先验证酒店/交通数据接口稳定性,并设计用户可控的“AI辅助+人工干预”混合模式。


方案三:复习助手

一、核心需求

​1. 精准押题与高频考点预测

  • 基于教师PPT、历年真题等数据生成押题试卷,重点覆盖高频考点(如物理大题等),通过AI分析出题规律并预测可能的解题方法。
  • 提供知识点考频统计(如“数列考中概率80%”)及出题形式分布(选择题/证明题等),帮助学生针对性复习。

2. ​知识点巩固与薄弱环节识别

  • 根据学生输入的知识掌握情况(如“电学板块较差”)或自动分析错题数据,生成专项练习题,强化薄弱环节。
  • 结合知识图谱可视化(如树状结构),动态展示知识点关联性,辅助学生自主选择复习方向。

3. ​个性化复习规划与时间管理

  • 根据剩余考试天数(如“7天”)、学生水平和目标,自动生成每日复习计划(如“前3天强化高频考点,后4天模拟测试”)。
  • 支持动态调整计划,例如针对测试结果推荐额外练习题或调整难度梯度。

4.​​ 多模态题库与智能推荐

  • 整合教材、真题、模拟题等资源,按知识点标签分类,支持按难度(基础/进阶)筛选题目。
  • 提供题目解析模板优化,避免答案机械重复。

二、可行性

​1. 技术基础

  • 现有大模型(如AutoBots、讯飞星火)已实现题目生成、知识召回和解析功能,正确率可达75%以上。
  • 知识图谱构建技术成熟,可通过教材章节、真题标签自动生成知识点关联网络。

​2. 数据来源

  • 公开数据:历年真题、教材电子版、教师PPT等可通过OCR或API获取。
  • 用户反馈:学生错题数据、测试记录可用于优化推荐算法。

​3. 实现路径

  • Agent架构​:分模块处理“数据清洗→知识点标注→题目生成→复习规划”,调用工具链(如百度地图API用于时间规划)。
  • 低成本验证​:优先开发单学科(如大学物理),再扩展至全科。

三、价值评估

1. ​学习效率提升

  • 减少50%盲目刷题时间,通过高频考点预测和错题归因,帮助学生针对性提分。

​2. 教学资源优化

  • 教师可快速生成差异化试卷(如“针对电学薄弱班级”),减少80%出题工作量。

3. ​商业潜力

  • 通过题库订阅、个性化报告付费等模式盈利,参考简道云的“错题分析+模拟考试”变现路径。

​4. 潜在风险

  • 过度依赖押题可能导致学生忽视系统学习,需设计“知识点掌握度”功能(如复习进度监控)。

四、创新性

​1. 动态知识图谱与交互设计

  • 支持学生拖拽调整知识树节点(如“优先复习力学”),实时更新推荐策略。
  • 结合AR技术展示物理实验步骤(如VR/AR模块),增强理解直观性。

2. ​多维度出题策略

  • 基于检索增强生成(RAG),从权威规范库提取最新考点,避免题目过时。
  • 生成“题眼相似但数值不同”的变式题(如数学题的同类变形),提高押题有效性。

3. ​自适应复习引擎

  • 融合强化学习算法,根据学生答题速度(如“平均30秒/选择题”)动态调整后续题目难度。

​4. 轻量化部署

  • 针对教育场景优化模型参数,支持离线模式下的基础功能(如知识点查询、错题导出)。

五、小结

        该方案通过​高频考点预测​和​动态知识图谱​填补了传统押题工具的空白,技术可行性高(已有AutoBots、简道云等案例验证),但需重点突破​题目逻辑连贯性​与​实时数据更新延迟​。未来可探索与教育硬件(如学习平板)深度融合,形成“诊断-练习-反馈”闭环。


最终方案确定投票(个人观点)

        结论:先做方案3,如果有时间可以加上方案1的功能。

        论证:对比方案1,2,3。

        论点1:在数据信息获取和数据集构造的难易程度上,2>1>3。

        方案2虽然不需要构造数据集,但是需要整合多维的数据信息,且该方案中涉及的数据实时性强,而方案1和3中的数据实时性相对较弱,因此2大于1和3(bushi)。

        方案1和方案3虽然都需要构造数据集,但因1有解题、分步等长思维链的推理需求,很难以一版数据一版模型一次就达到较为理想的状态,举比较典型的例子(1.数学的几何证明逻辑较为跳跃,2.模型“幻觉”导致的错误思考),因此1大于3(bushi)。

        论点2:在方案实施的难易程度上(或者说需要的时间长短)【指最先出一版最基础的Demo】1≈2>3。

        先说方案2,预计是三个方案中代码量最大且需要联调的,如果分工开发,需要对齐coding颗粒度。而且对于目前市面上的相关应用也有初步体验,做到与同行一致的水平需要一段时间。

        再说方案1,比较花时间的点就在于数据和模型微调上,能够出一版能力还可以的模型的时间是相对方案3较不可控的。

        最后对于方案3有一点初步的想法,就是prompt+rag能够快速出一版Demo。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值