与其说是学习笔记,不如说是AI对于队伍里小伙伴们的idea的总结。
方案一:做题助手
一、核心需求
1. 分步骤引导解题思路
区别于直接给出答案,模型需模拟教师引导过程,通过拆解题目难点、提示关键步骤,帮助学生理解思考逻辑(例如“先讲思路,再分步解答”)。
2. 多解法对比与优化
针对数学题提供多种解题方法(如常规解法与高数技巧),并分析不同方法的适用场景,帮助学生拓展思维。
3. 交互式提问与动态反馈
根据学生理解程度动态调整讲解深度,例如针对“卡壳”步骤提供额外提示,或允许学生追问细节(如“某一步如何推导”)。
4. 学段适配与知识边界限制
区分初中、高中知识点,避免使用超纲方法(如高中题禁用大学数学技巧),确保答案符合教学要求。
二、可行性
1. 技术基础
现有大模型(如讯飞星火、九章MathGPT)已具备数学解题和步骤拆解能力,部分模型正确率超过80%,且支持公式识别与图文混合输入。
2. 数据需求
需构建学科专用数据集,包含题目-解法对、常见错误类型及对应引导话术,可通过标注公开题库(如中高考真题)和人工校验补充实现。
3. 提示词工程
通过设计结构化提示模板,约束模型输出格式,降低答案机械性。
4. 难点与风险
需解决复杂题目推理链断裂问题(如几何证明逻辑跳跃),且需防范模型“幻觉”导致的错误。
三、价值评估
1. 学习效率提升
通过即时反馈和错题归因(如“易错题助手”),帮助学生针对性巩固薄弱点,减少无效刷题。
2. 教学辅助价值
为教师提供命题参考(如生成相似题)、学情分析(如高频错误统计),减轻备课负担。
3. 技术壁垒
差异化体现在引导策略的动态性(如根据学生水平调整提示深度),而不仅是答案正确率。
4. 潜在问题
过度依赖可能导致学生思维惰性,需设计“启发度”调节功能(如隐藏关键步骤强制思考)。
四、创新性
1. 动态引导机制
结合检索增强生成(RAG)技术,从知识库提取关联知识点例题,实现“解题-拓展”联动(如题库关联策略)。
2. 多模态交互
支持题目拍照识别、手写公式解析(如OCR功能),并探索图解生成能力。
3. 认知状态建模
通过历史答题数据推测学生知识掌握度,动态规划学习路径(如个性化推荐系统)。
4. 轻量化部署
针对教育场景优化模型参数,适配低算力终端,区别于通用大模型的臃肿架构。
五、小结
该方案通过引导式解题和交互设计填补了现有搜题工具的空白,技术可行性较高(已有星火、九章等垂类模型验证),但需重点突破步骤逻辑连贯性与学段适配精准度。未来可探索与教育硬件(如学习机)深度融合,形成“诊断-讲解-练习”闭环。
方案二:旅游助手
一、核心需求
1. 动态路线规划与实时调整
- 根据用户偏好(如紧凑行程、晚起需求)和实时交通数据(如拥堵、景区人流),生成最优路线,避免“往返跑”等不合理规划。
- 支持多维度路线选择(最短时间、最少换乘、避开高峰),并结合实时天气调整行程。
2. 多模态交互与地图可视化
- 集成地图API(如百度、高德)实现路线可视化,支持点击查看景点详情、拖拽调整顺序。
- 结合AR导航技术,通过摄像头实时叠加路线指引(如增强现实辅助导航)。
3. 个性化定制与数据整合
- 整合用户输入的已知景点、美食偏好、预算限制,结合携程/飞猪等平台的酒店、门票数据生成方案。
- 支持“渐进式规划”,允许用户中途修改需求并动态调整后续行程。
4. 酒店与交通智能推荐
- 基于历史行为分析推荐符合用户消费习惯的酒店(如亲子型、情侣型),并自动比价。
- 智能匹配公共交通与打车方案,提供实时公交到站时间、租车服务。
二、可行性
1. 技术基础
- 现有大模型(如携程TripGenie、视旅VtripGPT)已具备行程规划能力,正确率超75%。
- 地图API(百度/高德)支持路线规划、POI信息获取,且交互式地图开发框架成熟(如WebGL、Three.js)。
2. 数据来源
- 公开数据:景区开放时间、门票价格等可通过政府文旅平台获取。
- 商业合作:携程/美团等平台提供酒店、交通实时数据接口。
3. 实现路径
- Agent架构:拆分任务为“需求理解→数据检索→路线生成→地图渲染”模块,调用工具链(如搜索API、数据库)协作。
- 低成本验证:优先开发单城市MVP(如杭州),再扩展至跨省游。
4. 风险与挑战
- 实时数据更新延迟可能导致推荐偏差(如临时闭馆未同步)。
- 酒店动态价格和房态需高频刷新,可能增加接口调用成本。
三、价值评估
1. 用户体验提升
- 减少80%的攻略制作时间,通过地图交互直观避免路线错误。
- 动态优化功能可提升行程满意度30%。
2. 商业价值
- 通过酒店/门票导流分成、广告位投放实现盈利(参考携程“口碑榜”模式)。
- 积累用户行为数据后,可拓展至旅游保险、租车等衍生服务。
3. 社会效益
- 分流热门景区压力,通过冷门景点推荐促进区域旅游均衡发展。
- 降低自由行门槛,助力银发族、学生群体自主出游。
4. 潜在问题
- 过度依赖AI可能导致用户丧失自主探索乐趣,需设计“半自助模式”(如推荐3个备选方案供用户选择)。
四、创新性
1. 交互模式创新
- 地图-文本双向联动:点击地图景点自动跳转至详情页,修改文本行程实时同步地图标记。
- 多终端协同:手机端查看路线,平板端显示景点AR导览(参考VR/AR技术整合)。
2. 算法优化
- 时空约束模型:将用户作息(如“早上9点后出发”)、景点开放时间纳入路线规划算法。
- 社交数据融合:爬取小红书/抖音网红打卡点热度,动态更新推荐权重。
3.功能差异化
- 行李规划助手:根据行程天数、目的地气候推荐必备物品,并对接电商平台一键购买。
- 旅行剧本生成:提供“文化探索”“美食打卡”等主题剧本,自动匹配景点与餐饮。
4. 技术整合创新
- 多Agent协作:行程规划Agent调用地图Agent、酒店比价Agent并行处理,缩短响应时间。
- 离线模式:通过本地缓存实现无网络环境下基础功能可用(如已下载景区的地图导航)。
五、小结
该方案通过动态路线规划和多模态交互解决现有AI攻略的机械性问题,技术上依赖成熟API与Agent架构降低开发难度,商业上具备清晰的导流变现路径。创新点集中于时空约束算法与地图-文本双向交互,差异化竞争力显著。下一步需优先验证酒店/交通数据接口稳定性,并设计用户可控的“AI辅助+人工干预”混合模式。
方案三:复习助手
一、核心需求
1. 精准押题与高频考点预测
- 基于教师PPT、历年真题等数据生成押题试卷,重点覆盖高频考点(如物理大题等),通过AI分析出题规律并预测可能的解题方法。
- 提供知识点考频统计(如“数列考中概率80%”)及出题形式分布(选择题/证明题等),帮助学生针对性复习。
2. 知识点巩固与薄弱环节识别
- 根据学生输入的知识掌握情况(如“电学板块较差”)或自动分析错题数据,生成专项练习题,强化薄弱环节。
- 结合知识图谱可视化(如树状结构),动态展示知识点关联性,辅助学生自主选择复习方向。
3. 个性化复习规划与时间管理
- 根据剩余考试天数(如“7天”)、学生水平和目标,自动生成每日复习计划(如“前3天强化高频考点,后4天模拟测试”)。
- 支持动态调整计划,例如针对测试结果推荐额外练习题或调整难度梯度。
4. 多模态题库与智能推荐
- 整合教材、真题、模拟题等资源,按知识点标签分类,支持按难度(基础/进阶)筛选题目。
- 提供题目解析模板优化,避免答案机械重复。
二、可行性
1. 技术基础
- 现有大模型(如AutoBots、讯飞星火)已实现题目生成、知识召回和解析功能,正确率可达75%以上。
- 知识图谱构建技术成熟,可通过教材章节、真题标签自动生成知识点关联网络。
2. 数据来源
- 公开数据:历年真题、教材电子版、教师PPT等可通过OCR或API获取。
- 用户反馈:学生错题数据、测试记录可用于优化推荐算法。
3. 实现路径
- Agent架构:分模块处理“数据清洗→知识点标注→题目生成→复习规划”,调用工具链(如百度地图API用于时间规划)。
- 低成本验证:优先开发单学科(如大学物理),再扩展至全科。
三、价值评估
1. 学习效率提升
- 减少50%盲目刷题时间,通过高频考点预测和错题归因,帮助学生针对性提分。
2. 教学资源优化
- 教师可快速生成差异化试卷(如“针对电学薄弱班级”),减少80%出题工作量。
3. 商业潜力
- 通过题库订阅、个性化报告付费等模式盈利,参考简道云的“错题分析+模拟考试”变现路径。
4. 潜在风险
- 过度依赖押题可能导致学生忽视系统学习,需设计“知识点掌握度”功能(如复习进度监控)。
四、创新性
1. 动态知识图谱与交互设计
- 支持学生拖拽调整知识树节点(如“优先复习力学”),实时更新推荐策略。
- 结合AR技术展示物理实验步骤(如VR/AR模块),增强理解直观性。
2. 多维度出题策略
- 基于检索增强生成(RAG),从权威规范库提取最新考点,避免题目过时。
- 生成“题眼相似但数值不同”的变式题(如数学题的同类变形),提高押题有效性。
3. 自适应复习引擎
- 融合强化学习算法,根据学生答题速度(如“平均30秒/选择题”)动态调整后续题目难度。
4. 轻量化部署
- 针对教育场景优化模型参数,支持离线模式下的基础功能(如知识点查询、错题导出)。
五、小结
该方案通过高频考点预测和动态知识图谱填补了传统押题工具的空白,技术可行性高(已有AutoBots、简道云等案例验证),但需重点突破题目逻辑连贯性与实时数据更新延迟。未来可探索与教育硬件(如学习平板)深度融合,形成“诊断-练习-反馈”闭环。
最终方案确定投票(个人观点)
结论:先做方案3,如果有时间可以加上方案1的功能。
论证:对比方案1,2,3。
论点1:在数据信息获取和数据集构造的难易程度上,2>1>3。
方案2虽然不需要构造数据集,但是需要整合多维的数据信息,且该方案中涉及的数据实时性强,而方案1和3中的数据实时性相对较弱,因此2大于1和3(bushi)。
方案1和方案3虽然都需要构造数据集,但因1有解题、分步等长思维链的推理需求,很难以一版数据一版模型一次就达到较为理想的状态,举比较典型的例子(1.数学的几何证明逻辑较为跳跃,2.模型“幻觉”导致的错误思考),因此1大于3(bushi)。
论点2:在方案实施的难易程度上(或者说需要的时间长短)【指最先出一版最基础的Demo】1≈2>3。
先说方案2,预计是三个方案中代码量最大且需要联调的,如果分工开发,需要对齐coding颗粒度。而且对于目前市面上的相关应用也有初步体验,做到与同行一致的水平需要一段时间。
再说方案1,比较花时间的点就在于数据和模型微调上,能够出一版能力还可以的模型的时间是相对方案3较不可控的。
最后对于方案3有一点初步的想法,就是prompt+rag能够快速出一版Demo。