[NOIP模拟赛]不完美值

17 篇文章 0 订阅
9 篇文章 0 订阅
题目描述
如果一个数等于它的真因子之和,这样的数称为完数。如28=1+2+4+7+14,所以28为完数。我们可以定义不完美值为一个数与它的所有真因子之和的差的绝对值。令F(N)为不完美值,则有:
F(6)=|6-1-2-3|=0,
F(11)=|11-1|=10,
F(24)=|24-1-2-3-4-6-8-12|=|-12|=12

写一个程序,对于整数A,B,计算从A到B的所有数的不完美值之和:F(A)+F(A+1)+F(A+2)+……+F(B)


输入格式

第一行包含两个整数A,B(1<=A<=B<=10^7)


输出格式

一个整数,即答案。


输入样例
1 9
输出样例

21



题解:

设f[i]为i的所有因子之和,则其真因子之和即为f[i]-i。
可以将i分解质因数,设i=p1^k1*p2^k2*……pn^kn,那么f[i]=(1+p1+p1^2+……p1^k1)*(1+p2+p2^2+……p2^k2)*…*(1+pn+pn^2+……pn^kn),
于是可以采用类似筛质数的方法求出每个数的f[i]值。


#include<cstdio>
typedef long long LL;
const int N=1e7+10;
int A, B;
LL sum, ans[N];

int Abs( int x ) { return x<0 ? (-x) : x; }

int main() {
    scanf( "%d%d", &A, &B );
	
	ans[1]=1;
	for( int i=2; i<=B; i++ )
		if( !ans[i] ) {
			for(int j=2;j*i<=B;j++) {
				int t=j*i, w=1, c=i;
				while( !(t%i) ){ t/=i; w+=c; c*=i; }
				if( !ans[j*i] ) ans[j*i]=1;
				ans[j*i]*=w;
			}
			ans[i]=1+i;
		}
	
    for( int i=A; i<=B; i++ )
		sum+=Abs( ans[i]-i-i );
    printf( "%I64d\n", sum );
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值