小白如何快速入门数学建模

2019年5月更

考研考入某非知名211软件工程专业,受数学建模的一些帮助。今日准备再对数学建模进行聊一下。

1、数模中的问题更趋向于big data,启发式算法和大数据量的计算越来越常用,组内人员应学会python、R语言等诸多工具,以应对大数据量的处理,并熟练掌握神经网络在matlab下的使用

2、论文摘要很重要,格式写对,图片美观,把摘要写的高大上简明扼要一点,更容易获奖

3、数模获奖率较高,有机会最好多参与一下,以后无论对考研还是工作都是有很大的帮助的。

================================================================================================

2017年12月更

本人大三计算机专业,17年电工杯二等奖、MathorCup一等奖、国赛省一等奖、数创杯一等奖,奖项很水,但有必要介绍一下我参加建模的过程,希望对学弟学妹们有所帮助。

本人大一没想过比赛,大二为了我女朋友才跟她组队开始学着参加数学建模,从2017年2月开始上《数学建模》与《数学建模软件》两门选修课,从中对MATLAB有所了解,数学建模课程比较枯燥,仅仅是听过而已。

到2017年4月校赛,开始拿到校赛题目,时长15天,这15天的时间所做的题目是2017年认证杯第一阶段赛题:考研移动端产品的使用与评价,本题有大量数据,曾经高分通过计算机等级考试二级MS Office的我使用EXCEL对数据进行了处理,这起到了很大的作用,第一题是一个因子分析和聚类分析,经过百度得知可以使用SPSS,于是学习了SPSS,这个很好上手,百度相应的方法即可找到教程。

校赛后,拿电工杯和MathorCup练手,电工杯题目是人口预测,用到了leslie模型,MathorCup是共享单车的题目,又是大数据分析,这次直接是EXCEL完成的。

扯了这么多,给大家说一下如何准备数学建模吧。

首先,数学建模比赛一般分为优化类型的题目和数据分析或评价类的题目,需要3-4天提交一篇论文,三个成员需要有一名写手、一名编程人员和一名统筹调度(建模和想思路)人员,这三人的调度和论文撰写工作最好都要熟悉。是对题目的解答,而论文包括:摘要、问题重述、问题分析、模型假设、符号说明、模型的建立与求解、模型的评价、模型的改进与推广、参考文献、附录几大部分,最关键的是摘要,摘要写的不好,论文直接pass掉。

而如果摘要写的还可以,就是论文格式和所用的模型了,三人均需要熟练掌握OFFICE软件,EXCEL可以处理数据,里面的一些公式和函数一定要会,Word也要熟练掌握,尤其是其中的mathtype公式编辑器,要求所有的公式都需要用公式编辑器输入。编程人员需要熟练掌握Matlab、SPSS、Lingo,都很简单。

对于学习数学建模的方法,大概包括:规划(最优化)、图论、评价、相关性分析、回归等模型,还有一些比较高大上的算法,比如模拟退火算法、神经网络、粒子群算法,这些大多是处理优化问题的,当然神经网络还可以做分类,这些网上都有现成的代码,了解数据输入输出和如何分析结果即可。推荐司守奎老师的《数学建模与应用》一书(侧重实现),还有姜启源老师的《数学模型》一书(侧重原理的讲解)。

多看看优秀论文,注意格式和内容,掌握这些,建模应该不成问题了,祝各位同学好运。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页